(Roughly) Daily

Posts Tagged ‘philosophy of science

“Supersymmetry was (and is) a beautiful mathematical idea. The problem with applying supersymmetry is that it is too good for this world.”*…

Physicists reconsider their options…

A wise proverb suggests not putting all your eggs in one basket. Over recent decades, however, physicists have failed to follow that wisdom. The 20th century—and, indeed, the 19th before it—were periods of triumph for them. They transformed understanding of the material universe and thus people’s ability to manipulate the world around them. Modernity could not exist without the knowledge won by physicists over those two centuries.

In exchange, the world has given them expensive toys to play with. The most recent of these, the Large Hadron Collider (LHC), which occupies a 27km-circumference tunnel near Geneva and cost $6bn, opened for business in 2008. It quickly found a long-predicted elementary particle, the Higgs boson, that was a hangover from calculations done in the 1960s. It then embarked on its real purpose, to search for a phenomenon called Supersymmetry.

This theory, devised in the 1970s and known as Susy for short, is the all-containing basket into which particle physics’s eggs have until recently been placed. Of itself, it would eliminate many arbitrary mathematical assumptions needed for the proper working of what is known as the Standard Model of particle physics. But it is also the vanguard of a deeper hypothesis, string theory, which is intended to synthesise the Standard Model with Einstein’s general theory of relativity. Einstein’s theory explains gravity. The Standard Model explains the other three fundamental forces—electromagnetism and the weak and strong nuclear forces—and their associated particles. Both describe their particular provinces of reality well. But they do not connect together. String theory would connect them, and thus provide a so-called “theory of everything”.

String theory proposes that the universe is composed of minuscule objects which vibrate in the manner of the strings of a musical instrument. Like such strings, they have resonant frequencies and harmonics. These various vibrational modes, string theorists contend, correspond to various fundamental particles. Such particles include all of those already observed as part of the Standard Model, the further particles predicted by Susy, which posits that the Standard Model’s mathematical fragility will go away if each of that model’s particles has a heavier “supersymmetric” partner particle, or “sparticle”, and also particles called gravitons, which are needed to tie the force of gravity into any unified theory, but are not predicted by relativity.

But, no Susy, no string theory. And, 13 years after the LHC opened, no sparticles have shown up. Even two as-yet-unexplained results announced earlier this year (one from the LHC and one from a smaller machine) offer no evidence directly supporting Susy. Many physicists thus worry they have been on a wild-goose chase…

Bye, bye little Susy? Supersymmetry isn’t (so far, anyway) proving out; and prospects look dim. But a similar fallow period in physics led to quantum theory and relativity: “Physics seeks the future.”

Frank Wilczek


As we ponder paradigms, we might send insightful birthday greetings to Friedrich Wilhelm Ostwald; he was born on this date in 1853. A chemist and philosopher, he made many specific contributions to his field (including advances on atomic theory), and was one of the founders of the of the field of physical chemistry. He won the Nobel Prize in 1909.

Following his retirement in 1906 from academic life, Ostwald became involved in philosophy, art, and politics– to each of which he made significant contributions.


“One cannot walk down an avenue, converse with a friend, enter a building, browse beneath the sandstone arches of an old arcade without meeting an instrument of time.”*…

Frieze on the Tower of the Winds in Athens, an early public clock

Time has ordered human life for millennia….

The Tower of the Winds, in the Greek city of Athens… is one of the best-​preserved buildings from the ancient world. This octagonal marble tower, sited close to a busy marketplace at the foot of the hill of the famous Acropolis, rises forty-​two feet into the air and measures twenty-​six feet across, and it was an astonishing sight for the people of this crowded and vibrant city. The external walls were covered in brightly colored reliefs and moldings representing the eight winds, with each of the eight walls, and a semi-​circular annex, carrying a sundial. Inside the ceiling was painted a stunning blue color covered with golden stars. At the center of the imposing interior was a water clock, which was fed from a sacred source high up on the hill of the Acropolis called the Clepsydra, a name which became synonymous with all water clocks. The clock is believed once to have driven a complex mechanical model of the heavens themselves, like a planetarium, orrery, or armillary sphere.

Nobody is quite sure when the Tower of the Winds was built, but it was probably about 140 bc. As with the sundial at the Roman Forum, we can think of it as an early public clock tower, giving Athenians the time of day as they went about their daily business at the market and elsewhere, and giving order to their lives. It was also symbolic of a wider order. The gods of the winds, depicted on its decorative panels, were allegories of world order; the stars inside, together with the water clock and its mechanical replica of the heavens, were symbolic of a cosmic order. Certainly, it was an astonishing spectacle.

But, also like the sundial proudly installed by Valerius in Rome, the Tower of the Winds may have carried a further message. If, as some historians believe, the structure was built by Attalos II, king of the Greek city of Pergamon, to commemorate the Athenian defeat of the Persian Navy in 480 bc, then it could serve as a vivid peacetime reminder of the military strength of the state—​and the discipline needed to maintain it…

In empires around the world, the sight and sound of time from high towers had begun to organize the lives of the people, and project a message of power and order.

It is tempting, in the twenty-​first century, to feel that we are the first generation to resent being governed by the clock as we go about our daily lives; that we are no longer in control of what we do and when we do it because we must follow the clock’s orders. During our long warehouse shifts, sitting at our factory workstations, or enduring seemingly never-​ending meetings at the office, we might grumble that the morning is dragging on, but we cannot eat because the clock has not yet got around to lunchtime. But these feelings are nothing new. In fact, while the public sundial was new to Romans in 263 bc, it had been in widespread use long before that in other cities around the world; the first water clocks date back even further than sundials, more than 3,500 years to ancient Babylon and Egypt.

It is easy to think that public clocks are an inevitable feature of our lives. But by looking more closely at their history, we can understand better what they used to mean—​and why they were built in the first place. Because wherever we are, as far back as we care to look, we can find that monumental timekeepers mounted high up on towers or public buildings have been put there to keep us in order, in a world of violent disorder.

Public time has been on the march for thousands of years: “Monumental Timekeepers,” an except from David Rooney‘s (@rooneyvision) About Time- A History of Civilization in Twelve Clocks. Via @longnow.

* Alan Lightman


As we watch the clock, we might send timely birthday greetings to George Alfred Leon Sarton; he died on this date in 1956. A chemist by training, his primary interest lay in the past practices and precepts of his field…an interest that led him to found the discipline of the history of science as an independent field of study. His most influential work was the Introduction to the History of Science (three volumes totaling 4,296 pages), which effectively founded that discipline. Sarton ultimately aimed to achieve an integrated philosophy of science that connected the sciences and the humanities– what he called “the new humanism.” His name is honored with the prestigious George Sarton Medal, awarded by the History of Science Society.


“The most incomprehensible thing about the world is that it is at all comprehensible”*…

There is an order to the ordered search for ordered understanding…

Science (from Latin scientia, meaning “knowledge”) is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.

Modern science is typically divided into three major branches that consist of the natural sciences (biology, chemistry, physics, astronomy and Earth science), which study nature in the broadest sense; the social sciences (e.g. psychology, sociology, economics, history) which study people and societies; and the formal sciences (e.g. mathematics, logic, theoretical computer science), which study abstract concepts. There is disagreement, however, on the formal sciences being a science [as they use an a priori, as opposed to empirical, methodology]. Disciplines that use science, such as engineering and medicine, are described as applied sciences

And there is a dazzling array of “branches” of the scientific endeavor:

Acanthochronology – study of cactus spines grown in time ordered sequence

Acarology – study of mites and ticks

Aceology – science of remedies, or of therapeutics; iamatology

Acology – study of medical remedies

Acoustics – science of sound

Actinobiology – synonymous with radiobiologyAdenology – study of glands…

Browse dozens and dozens at “Index of branches of science,” from Wikipedia… whose contributors may be erring on the generous side, as the list includes such entries as “Hamartiology” (the study of sin) and “Taxidermy” (the art of curing and stuffing animals).

* Albert Einstein


As we tackle taxonomy, we might recall that it was on this date in 2013 that Google experienced a five-minute outage affecting all of it’s services, including Google Search, YouTube, and Google Drive. During that brief period global internet traffic dropped 40%.

“An architect should live as little in cities as a painter. Send him to our hills, and let him study there what nature understands by a buttress, and what by a dome.”*…

We’ve misunderstood an important part of the history of urbanism– jungle cities. Patrick Roberts suggests that they have much to teach us…

Visions of “lost cities” in the jungle have consumed western imaginations since Europeans first visited the tropics of Asia, Africa and the Americas. From the Lost City of Z to El Dorado, a thirst for finding ancient civilisations and their treasures in perilous tropical forest settings has driven innumerable ill-fated expeditions. This obsession has seeped into western societies’ popular ideas of tropical forest cities, with overgrown ruins acting as the backdrop for fear, discovery and life-threatening challenges in countless films, novels and video games.

Throughout these depictions runs the idea that all ancient cities and states in tropical forests were doomed to fail. That the most resilient occupants of tropical forests are small villages of poison dart-blowing hunter-gatherers. And that vicious vines and towering trees – or, in the case of The Jungle Book, a boisterous army of monkeys – will inevitably claw any significant human achievement back into the suffocating green whence it came. This idea has been boosted by books and films that focus on the collapse of particularly enigmatic societies such as the Classic Maya. The decaying stone walls, the empty grand structures and the deserted streets of these tropical urban leftovers act as a tragic warning that our own way of life is not as secure as we would like to assume.

For a long time, western scholars took a similar view of the potential of tropical forests to sustain ancient cities. On the one hand, intensive agriculture, seen as necessary to fuel the growth of cities and powerful social elites, has been considered impossible on the wet, acidic, nutrient-poor soils of tropical forests. On the other, where the rubble of cities cannot be denied, in the drier tropics of North and Central America, south Asia and south-east Asia, ecological catastrophe has been seen as inevitable. Deforestation to make way for massive buildings and growing populations, an expansion of agriculture across marginal soils, as well as natural disasters such as mudslides, flooding and drought, must have made tropical cities a big challenge at best, and a fool’s gambit at worst.

Overhauling these stereotypes has been difficult. For one thing, the kind of large, multiyear field explorations usually undertaken on the sites of ancient cities are especially hard in tropical forests. Dense vegetation, mosquito-borne disease, poisonous plants and animals and torrential rain have made it arduous to find and excavate past urban centres. Where organic materials, rather than stone, might have been used as a construction material, the task becomes even more taxing. As a result, research into past tropical urbanism has lagged behind similar research in Mesopotamia and Egypt and the sweeping river valleys of east Asia.

Yet many tropical forest societies found immensely successful methods of food production, in even the most challenging of circumstances, which could sustain impressively large populations and social structures. The past two decades of archaeological exploration, applying the latest science from the land and the air, have stripped away canopies to provide new, more favourable assessments.

Not only did societies such as the Classic Maya and the Khmer empire of Cambodia flourish, but pre-colonial tropical cities were actually some of the most extensive urban landscapes anywhere in the pre-industrial world – far outstripping ancient Rome, Constantinople/Istanbul and the ancient cities of China.

Ancient tropical cities could be remarkably resilient, sometimes surviving many centuries longer than colonial- and industrial-period urban networks in similar environments. Although they could face immense obstacles, and often had to reinvent themselves to beat changing climates and their own exploitation of the surrounding landscape, they also developed completely new forms of what a city could be, and perhaps should be.

Extensive, interspersed with nature and combining food production with social and political function, these ancient cities are now catching the eyes of 21st-century urban planners trying to come to grips with tropical forests as sites of some of the fastest-growing human populations around the world today…

They may be vine-smothered ruins today, but the lost cities of the ancient tropics still have a lot to teach us about how to live alongside nature. Dr. Roberts (@palaeotropics) explains: “The real urban jungle: how ancient societies reimagined what cities could be,” adapted from his new book, Jungle: How Tropical Forests Shaped the World – and Us.

* John Ruskin


As we acclimate, we might send thoughtful birthday greetings to Sir Karl Raimund Popper; he was born on this date in 1902.  One of the greatest philosophers of science of the 20th century, Popper is best known for his rejection of the classical inductivist views on the scientific method, in favor of empirical falsification: a theory in the empirical sciences can never be proven, but it can be falsified, meaning that it can and should be scrutinized by decisive experiments.  (Or more simply put, whereas classical inductive approaches considered hypotheses false until proven true, Popper reversed the logic: conclusions drawn from an empirical finding are true until proven false.)

Popper was also a powerful critic of historicism in political thought, and (in books like The Open Society and Its Enemies and The Poverty of Historicism) an enemy of authoritarianism and totalitarianism (in which role he was a mentor to George Soros).


“People seemed to believe that technology had stripped hurricanes of their power to kill. No hurricane expert endorsed this view.”*…

Tropical Storm Bertha approaching the South Carolina coast, May 27, 2020

For six straight years, Atlantic storms have been named in May, before [hurricane] season even begins. During the past nine Atlantic hurricane seasons, seven tropical storms have formed between May 15 and the official June 1 start date. Those have killed at least 20 people, causing about $200 million in damage, according to the WMO.

Last year, the hurricane center issued 36 “special” tropical weather outlooks before June 1, according to center spokesman Dennis Feltgen. Tropical Storms Arthur and Bertha both formed before June 1 near the Carolinas.

torms seem to be forming earlier because climate change is making the ocean warmer, University of Miami hurricane researcher Brian McNoldy said. Storms need warm water as fuel — at least 79 degrees (26 degrees Celsius). Also, better technology and monitoring are identifying and naming weaker storms that may not have been spotted in years past, Feltgen said…

With named storms coming earlier and more often in warmer waters, the Atlantic hurricane season is going through some changes with meteorologists ditching the Greek alphabet during busy years…

A special World Meteorological Organization committee Wednesday ended the use of Greek letters when the Atlantic runs out of the 21 names for the year, saying the practice was confusing and put too much focus on the Greek letter and not on the dangerous storm it represented. Also, in 2020 with Zeta, Eta and Theta, they sounded so similar it caused problems.

The Greek alphabet had only been used twice in 2005 and nine times last year in a record-shattering hurricane season. 

Starting this year, if there are more than 21 Atlantic storms, the next storms will come from a new supplemental list headed by Adria, Braylen, Caridad and Deshawn and ending with Will. There’s a new back-up list for the Eastern Pacific that runs from Aidan and Bruna to Zoe.

Meanwhile, the National Oceanic Atmospheric Administration is recalculating just what constitutes an average hurricane season… But the Atlantic hurricane season will start this year on June 1 as traditionally scheduled, despite meteorologists discussing the idea of moving it to May 15…

With so much activity, MIT’s [Kerry] Emanuel said the current warnings are too storm-centric, and he wants them more oriented to where people live, warning of specific risks such as floods and wind. That includes changing or ditching the nearly 50-year-old Saffir Simpson scale of rating hurricanes Category 1 to 5. 

That wind-based scale is “about a storm, it’s not about you. I want to make it about you, where you are,” he said. “It is about risk. In the end, we are trying to save lives and property”… Differentiating between tropical storms, hurricanes and extratropical cyclones can be a messaging problem when a system actually has a cold core, because these weaker storms can kill with water surges rather than wind… For example, some people and officials underestimated 2012’s Sandy because it wasn’t a hurricane and lost its tropical characteristic… 

Rethinking hurricanes in a time of climate change: “Bye Alpha, Eta: Greek alphabet ditched for hurricane names.”

* Erik Larson, Isaac’s Storm: A Man, a Time, and the Deadliest Hurricane in History


As we accommodate climate change, we might spare a thought for George Alfred Leon Sarton; he died on this date in 1956. A chemist by training, his primary interest lay in the past practices and precepts of his field…an interest that led him to found the discipline of the history of science as an independent field of study. His most influential work was the Introduction to the History of Science (three volumes totaling 4,296 pages). Sarton ultimately aimed to achieve an integrated philosophy of science that connected the sciences and the humanities– what he called “the new humanism.” His name is honored with the prestigious George Sarton Medal, awarded by the History of Science Society.


Written by (Roughly) Daily

March 22, 2021 at 1:01 am

%d bloggers like this: