(Roughly) Daily

Posts Tagged ‘Life

“So these are the ropes, The tricks of the trade, The rules of the road”*…

Morgan Housel shares a few thing with which he’s come to terms…

Everyone belongs to a tribe and underestimates how influential that tribe is on their thinking.

Most of what people call “conviction” is a willful disregard for new information that might make you change your mind. That’s when beliefs turn dangerous.

History is driven by surprising events but forecasting is driven by obvious ones.

People learn when they’re surprised. Not when they read the right answer, or are told they’re doing it wrong, but when they experience a gap between expectations and reality.

“Learn enough from history to respect one another’s delusions.” -Will Durant

Your personal experiences make up maybe 0.00000001% of what’s happened in the world but maybe 80% of how you think the world works.

Unsustainable things can last longer than you anticipate.

It’s hard to tell the difference between boldness and recklessness, ambition and greed, contrarian and wrong.

There are two types of information: stuff you’ll still care about in the future, and stuff that matters less and less over time. Long-term vs. expiring knowledge. It’s critical to identify which is which when you come across something new.

Small risks are overblown because they’re easy to talk about, big risks are discounted and ignored because they seem preposterous before they arrive.

You can’t believe in risk without also believing in luck because they are fundamentally the same thing—an acknowledgment that things outside of your control can have a bigger impact on outcomes than anything you do on your own.

Once-in-a-century events happen all the time because lots of unrelated things can go wrong. If there’s a 1% chance of a new disastrous pandemic, a 1% chance of a crippling depression, a 1% chance of a catastrophic flood, a 1% chance of political collapse, and on and on, then the odds that something bad will happen next year – or any year – are … pretty good. It’s why Arnold Toynbee says history is “just one damn thing after another.”

Many more affecting aphorisms at: “Little Rules About Big Things,” from @morganhousel @collabfund.

* “Rules Of The Road,” by Cy Coleman and Caroline Leigh (famously recorded by Tony Bennett and Nat King Cole)


As we ponder precepts, we might send prophylactic birthday greetings to Samuel W. Alderson; he was born on this date in 1914.  A physicist and engineer of broad accomplishment, Alderson is probably best remembered as the inventor of the crash test dummy.  Alderson created his first dummies in 1956 to test jet ejection seats for the military.  But with the passage of the Highway Traffic and Motor Vehicle Safety Act in 1966 (on the heels of the stir created by Ralph Nader’s Unsafe at Any Speed), Alderson found a much broader market.  (From the first experiments on car safety in the 1930s, cadavers had been used to assess risk and damage; the dummy had obvious advantages.)  Alderson continuously improved his dummies, and later branched out to produce medical “phantoms” for simulations– e.g., synthetic wounds that ooze mock blood.


Written by (Roughly) Daily

October 21, 2022 at 1:00 am

“Over the long term, symbiosis is more useful than parasitism. More fun, too.”*…

Blue-green formations of malachite form in copper deposits near the surface as they weather. But they could only arise after life raised atmospheric oxygen levels, starting about 2.5 billion years ago.

There are many more varieties of minerals on earth than previously believed– and about half of them formed as parts or byproducts of living things…

The impact of Earth’s geology on life is easy to see, with organisms adapting to environments as different as deserts, mountains, forests, and oceans. The full impact of life on geology, however, can be easy to miss.

A comprehensive new survey of our planet’s minerals now corrects that omission. Among its findings is evidence that about half of all mineral diversity is the direct or indirect result of living things and their byproducts. It’s a discovery that could provide valuable insights to scientists piecing together Earth’s complex geological history—and also to those searching for evidence of life beyond this world.

In a pair of papers published on July 1, 2022 in American Mineralogist, researchers Robert HazenShaunna Morrison and their collaborators outline a new taxonomic system for classifying minerals, one that places importance on precisely how minerals form, not just how they look. In so doing, their system acknowledges how Earth’s geological development and the evolution of life influence each other.

Their new taxonomy, based on an algorithmic analysis of thousands of scientific papers, recognizes more than 10,500 different types of minerals. That’s almost twice as many as the roughly 5,800 mineral “species” in the classic taxonomy of the International Mineralogical Association, which focuses strictly on a mineral’s crystalline structure and chemical makeup.

Morrison and Hazen also identified 57 processes that individually or in combination created all known minerals. These processes included various types of weathering, chemical precipitations, metamorphic transformation inside the mantle, lightning strikes, radiation, oxidation, massive impacts during Earth’s formation, and even condensations in interstellar space before the planet formed. They confirmed that the biggest single factor in mineral diversity on Earth is water, which through a variety of chemical and physical processes helps to generate more than 80 percent of minerals.

But they also found that life is a key player: One-third of all mineral kinds form exclusively as parts or byproducts of living things—such as bits of bones, teeth, coral, and kidney stones (which are all rich in mineral content) or feces, wood, microbial mats, and other organic materials that over geologic time can absorb elements from their surroundings and transform into something more like rock. Thousands of minerals are shaped by life’s activity in other ways, such as germanium compounds that form in industrial coal fires. Including substances created through interactions with byproducts of life, such as the oxygen produced in photosynthesis, life’s fingerprints are on about half of all minerals.

But they also found that life is a key player: One-third of all mineral kinds form exclusively as parts or byproducts of living things—such as bits of bones, teeth, coral, and kidney stones (which are all rich in mineral content) or feces, wood, microbial mats, and other organic materials that over geologic time can absorb elements from their surroundings and transform into something more like rock. Thousands of minerals are shaped by life’s activity in other ways, such as germanium compounds that form in industrial coal fires. Including substances created through interactions with byproducts of life, such as the oxygen produced in photosynthesis, life’s fingerprints are on about half of all minerals.

Historically, scientists “have artificially drawn a line between what is geochemistry and what is biochemistry,” said Nita Sahai, a biomineralization specialist at the University of Akron in Ohio who was not involved in the new research. In reality, the boundary between animal, vegetable, and mineral is much more fluid.

A new origins-based system for classifying minerals reveals the huge geochemical imprint that life has left on Earth. It could help us identify other worlds with life too: “Life Helps Make Almost Half of All Minerals on Earth,” from @jojofoshosho0 in @QuantaMagazine.

Larry Wall


As we muse on minerals, we might send systemic birthday greetings to Thomas Samuel Kuhn; he was born on this date in 1922.  A physicist, historian, and philosopher of science, Kuhn believed that scientific knowledge didn’t advance in a linear, continuous way, but via periodic “paradigm shifts.”  Karl Popper had approached the same territory in his development of the principle of “falsification” (to paraphrase, a theory isn’t false until it’s proven true; it’s true until it’s proven false).  But while Popper worked as a logician, Kuhn worked as a historian.  His 1962 book The Structure of Scientific Revolutions made his case; and while he had– and has— his detractors, Kuhn’s work has been deeply influential in both academic and popular circles (indeed, the phrase “paradigm shift” has become an English-language staple).

“What man sees depends both upon what he looks at and also upon what his previous visual-conception experience has taught him to see.”

Thomas S. Kuhn, The Structure of Scientific Revolutions


“Two obsessions are the hallmarks of Nature’s artistic style: Symmetry- a love of harmony, balance, and proportion [and] Economy- satisfaction in producing an abundance of effects from very limited means”*…

Life is built of symmetrical structures. But why? Sachin Rawat explores…

Life comes in a variety of shapes and sizes, but all organisms generally have at least one feature in common: symmetry.

Notice how your left half mirrors the right or the radial arrangement of the petals of a flower or a starfish’s arms. Such symmetry persists even at the microscopic level, too, in the near-spherical shape of many microbes or in the identical sub-units of different proteins.

The abundance of symmetry in biological forms begs the question of whether symmetric designs provide an advantage. Any engineer would tell you that they do. Symmetry is crucial to designing modular, robust parts that can be combined together to create more complex structures. Think of Lego blocks and how they can be assembled easily to create just about anything.

However, unlike an engineer, evolution doesn’t have the gift of foresight. Some biologists suggest that symmetry must provide an immediate selective advantage. But any adaptive advantage that symmetry may provide isn’t by itself sufficient to explain its pervasiveness in biology across scales both great and small.

Now, based on insights from algorithmic information theory, a study published in Proceedings of the Natural Academy of Sciences suggests that there could be a non-adaptive explanation…

Symmetrical objects are less complex than non-symmetrical ones. Perhaps evolution acts as an algorithm with a bias toward simplicity: “Simple is beautiful: Why evolution repeatedly selects symmetrical structures,” from @sachinxr in @bigthink.

Frank Wilczek (@FrankWilczek)


As we celebrate symmetry, we might recall (speaking of symmetry) that it was on this date in 1963 that the Equal Pay Act of 1963 was signed into law by president John F. Kennedy. Aimed at abolishing wage disparity based on sex, it provided that “[n]o employer having employees subject to any provisions of this section [section 206 of title 29 of the United States Code] shall discriminate, within any establishment in which such employees are employed, between employees on the basis of sex by paying wages to employees in such establishment at a rate less than the rate at which he pays wages to employees of the opposite sex in such establishment for equal work on jobs[,] the performance of which requires equal skill, effort, and responsibility, and which are performed under similar working conditions, except where such payment is made pursuant to (i) a seniority system; (ii) a merit system; (iii) a system which measures earnings by quantity or quality of production; or (iv) a differential based on any other factor other than sex […].

Those exceptions (and lax enforcement) have meant that, 60 years later, women in the U.S. are still paid less than men in comparable positions in nearly all occupations, earning on average 83 cents for every dollar earned by a man in a similar role.


“Oh how wrong we were to think immortality meant never dying”*…

Mourir C’est Renaitre (Death and Immortality), Copy after William Blake

The John Templeton Foundation has undertaken a undertaken a deep investigation into the biology, philosophy, and theology of immortality research. Lorraine Boissoneault offers the first in a series of reports on their work…

Around 100,000 years ago, humans living in the region that would come to be called “Israel” did something remarkable. When members of the community died, those left behind buried the dead in a cave, placing some of the bodies with great care and arranging them near colorful pigments and shells. Although burial is so common today as to be almost unremarkable, for ancient humans to exhibit such behavior suggested a major development in cultural practices. The Qafzeh Cave is one of the oldest examples that humans understand death differently than many other creatures. We seem to have an innate desire to mark it with ritual.

It is an unavoidable fact of biology that all organisms die, whether by disease, disaster, or simply old age. Yet our species, Homo sapiens, seems to be the only creature blessed—or cursed—with the cognitive ability to understand our mortality. And thanks to our powerful intelligence, we’re also the only beings to imagine and seek out death’s opposite: immortality. 

In religious traditions, spiritual afterlives and reincarnation offer continuation of the self beyond death. In myth and legend, sources of everlasting life abound, from the Fountain of Youth to elixirs of life. Some people seek symbolic immortality through procreation. Others aim for contributions to society, whether artistic, academic or scientific. And still others have pushed the bounds of technology in search of dramatic life extension or a digital self. 

Where does this impulse come from?…

Find out: “Pre-life, Afterlife, and the Drive for Immortality,” from @boissolm @templeton_fdn.

Gerard Way


As we internalize eternity, we might recall that it was on this date in 1826 that the HMS Beagle set sail from Plymouth on its first voyage, an expedition to conduct a hydrographic survey of Patagonia and Tierra del Fuego in support of the larger ship HMS Adventure.

The Beagle‘s second voyage (1831-1836) is rather better remembered, as it was on that expedition that the ship’s naturalist, a young Charles Darwin (whose published journal of the journey, quoted above, earned him early fame as a writer) made the observations that led him to even greater fame for his theory of evolution.



“Nothing from nothing ever yet was born”*…

Lacy M. Johnson argues that there is no hierarchy in the web of life…

… Humans have been lumbering around the planet for only a half million years, the only species young and arrogant enough to name ourselves sapiens in genus Homo. We share a common ancestor with gorillas and whales and sea squirts, marine invertebrates that swim freely in their larval phase before attaching to rocks or shells and later eating their own brain. The kingdom Animalia, in which we reside, is an offshoot of the domain Eukarya, which includes every life-form on Earth with a nucleus—humans and sea squirts, fungi, plants, and slime molds that are ancient by comparison with us—and all these relations occupy the slenderest tendril of a vast and astonishing web that pulsates all around us and beyond our comprehension.

The most recent taxonomies—those based on genetic evidence that evolution is not a single lineage, but multiple lineages, not a branch that culminates in a species at its distant tip, but a network of convergences—have moved away from their histories as trees and chains and ladders. Instead, they now look more like sprawling, networked webs that trace the many points of relation back to ever more ancient origins, beyond our knowledge or capacity for knowing, in pursuit of the “universal ancestors,” life-forms that came before metabolism, before self-replication—the several-billion-year-old plasmodial blobs from which all life on Earth evolved. We haven’t found evidence for them yet, but we know what we’re looking for: they would be simple, small, and strange.

Slime molds can enter stasis at any stage in their life cycle—as an amoeba, as a plasmodium, as a spore— whenever their environment or the climate does not suit their preferences or needs. The only other species who have this ability are the so-called “living fossils” such as tardigrades and Notostraca (commonly known as water bears and tadpole shrimp, respectively). The ability to become dormant until conditions are more favorable for life might be one of the reasons slime mold has survived as long as it has, through dozens of geologic periods, countless ice ages, and the extinction events that have repeatedly wiped out nearly all life on Earth.

Slime mold might not have evolved much in the past two billion years, but it has learned a few things during that time. In laboratory environments, researchers have cut Physarum polycephalum into pieces and found that it can fuse back together within two minutes. Or, each piece can go off and live separate lives, learn new things, and return later to fuse together, and in the fusing, each individual can teach the other what it knows, and can learn from it in return.

Though, in truth, “individual” is not the right word to use here, because “individuality”—a concept so central to so many humans’ identities—doesn’t apply to the slime mold worldview. A single cell might look to us like a coherent whole, but that cell can divide itself into countless spores, creating countless possible cycles of amoeba to plasmodium to aethalia, which in turn will divide and repeat the cycle again. It can choose to “fruit” or not, to reproduce sexually or asexually or not at all, challenging every traditional concept of “species,” the most basic and fundamental unit of our flawed and imprecise understanding of the biological world. As a consequence, we have no way of knowing whether slime molds, as a broad class of beings, are stable or whether climate change threatens their survival, as it does our own. Without a way to count their population as a species, we can’t measure whether they are endangered or thriving. Should individuals that produce similar fruiting bodies be considered a species? What if two separate slime molds do not mate but share genetic material? The very idea of separateness seems antithetical to slime mold existence. It has so much to teach us…

More at: “What Slime Knows,” from @lacymjohnson in @Orion_Magazine.

See also, “Slime Molds Remember — but Do They Learn?” (from whence the image above) and “Now, in addition to penicillin, we can credit mold with elegant design.”

* Lucretius, On the Nature of Things


As we contemplate kinship, we might send insightful birthday greetings to Johann Hedwig; he was born on this date in 1730. A botanist noted for his study of mosses, he is considered “the father of bryology” (the study of mosses… cousins of mold).


Written by (Roughly) Daily

December 8, 2021 at 1:00 am

%d bloggers like this: