(Roughly) Daily

Posts Tagged ‘Science

“This potential possibility need only play a role as a counterfactual, according to quantum theory, for it to have an actual effect!”*…

Contemplate counterfactuals: things that have not happened — but could happen — a neglected area of scientific theory…

If you could soar high in the sky, as red kites often do in search of prey, and look down at the domain of all things known and yet to be known, you would see something very curious: a vast class of things that science has so far almost entirely neglected. These things are central to our understanding of physical reality, both at the everyday level and at the level of the most fundamental phenomena in physics — yet they have traditionally been regarded as impossible to incorporate into fundamental scientific explana­tions. They are facts not about what is — the ‘actual’ — but about what could or could not be. In order to distinguish them from the ac­tual, they are called counterfactuals.

Suppose that some future space mission visited a remote planet in another solar system, and that they left a stainless-steel box there, containing among other things the critical edition of, say, William Blake’s poems. That the poetry book is subsequently sit­ting somewhere on that planet is a factual property of it. That the words in it could be read is a counterfactual property, which is true regardless of whether those words will ever be read by anyone. The box may be never found; and yet that those words could be read would still be true — and laden with significance. It would signify, for instance, that a civilization visited the planet, and much about its degree of sophistication.

To further grasp the importance of counterfactual properties, and their difference from actual properties, imagine a computer programmed to produce on its display a string of zeroes. That is a factual property of the computer, to do with its actual state — with what is. The fact that it could be reprogrammed to output other strings is a counterfactual property of the computer. The computer may never be so programmed; but the fact that it could is an essential fact about it, without which it would not qualify as a computer.

The counterfactuals that matter to science and physics, and that have so far been neglected, are facts about what could or could not be made to happen to physical systems; about what is possible or impossible. They are fundamental because they express essential features of the laws of physics — the rules that govern every system in the universe. For instance, a counterfactual property imposed by the laws of physics is that it is impossible to build a perpetual motion machine. A perpetual motion machine is not simply an object that moves forever once set into motion: it must also gener­ate some useful sort of motion. If this device could exist, it would produce energy out of no energy. It could be harnessed to make your car run forever without using fuel of any sort. Any sequence of transformations turning something without energy into some thing with energy, without depleting any energy supply, is impos­sible in our universe: it could not be made to happen, because of a fundamental law that physicists call the principle of conservation of energy.

Another significant counterfactual property of physical sys­tems, central to thermodynamics, is that a steam engine is possible. A steam engine is a device that transforms energy of one sort into energy of a different sort, and it can perform useful tasks, such as moving a piston, without ever violating that principle of conserva­tion of energy. Actual steam engines (those that have been built so far) are factual properties of our universe. The possibility of build­ing a steam engine, which existed long before the first one was actually built, is a counterfactual.

So the fundamental types of counterfactuals that occur in physics are of two kinds: one is the impossibility of performing a transformation (e.g., building a perpetual motion machine); the other is the possibility of performing a transformation (e.g., building a steam engine). Both are cardinal properties of the laws of phys­ics; and, among other things, they have crucial implications for our endeavours: no matter how hard we try, or how ingeniously we think, we cannot bring about transformations that the laws of physics declare to be impossible — for example, creating a per­petual motion machine. However, by thinking hard enough, we can come up with more and better ways of performing a pos­sible transformation — for instance, that of constructing a steam engine — which can then improve over time.

In the prevailing scientific worldview, counterfactual proper­ties of physical systems are unfairly regarded as second-class citi­zens, or even excluded altogether. Why? It is because of a deep misconception, which, paradoxically, originated within my own field, theoretical physics. The misconception is that once you have specified everything that exists in the physical world and what happens to it — all the actual stuff — then you have explained every­thing that can be explained. Does that sound indisputable? It may well. For it is easy to get drawn into this way of thinking with­out ever realising that one has swallowed a number of substantive assumptions that are unwarranted. For you can’t explain what a computer is solely by specifying the computation it is actually per­forming at a given time; you need to explain what the possible com­putations it could perform are, if it were programmed in possible ways. More generally, you can’t explain the presence of a lifeboat aboard a pirate ship only in terms of an actual shipwreck. Everyone knows that the lifeboat is there because of a shipwreck that could happen (a counterfactual explanation). And that would still be the reason even if the ship never did sink!

Despite regarding counterfactuals as not fundamental, science has been making rapid, relentless progress, for example, by devel­oping new powerful theories of fundamental physics, such as quantum theory and Einstein’s general relativity; and novel expla­nations in biology — with genetics and molecular biology — and in neuroscience. But in certain areas, it is no longer the case. The assumption that all fundamental explanations in science must be expressed only in terms of what happens, with little or no refer­ence to counterfactuals, is now getting in the way of progress. For counterfactuals are essential to a number of things that are cur­rently explained only vaguely in science, or not explained at all. Counterfactuals are central to an exact, unified theory of heat, work, and information (both classical and quantum); to explain mat­ters such as the appearance of design in living things; and to a sci­entific explanation of knowledge…

An excerpt from Chiara Marletto‘s The Science of Can and Can’t: A Physicist’s Journey Through the Land of Counterfactuals, via the invaluable @delanceyplace.

[Image above: source]

* Roger Penrose, Shadows of the Mind: A Search for the Missing Science of Consciousness

###

As we ponder the plausible, we might send superlatively speculative birthday greetings to an accomplished counterfactualist, H.G. Wells; he was born on this date in 1866.  A prolific writer of novels, history, political and social commentary, textbooks, and rules for war games, Wells is best remembered (with Jules Verne and Hugo Gernsback) as “the father of science fiction” for his “scientific romances”– The War of the WorldsThe Time MachineThe Invisible Man, The Island of Doctor Moreau, et al.

 source

“Fortune sides with him who dares”*…

Timing is everything: risk and the rhythm of the week…

The seven-day week originated in Mesopotamia among the Babylonians, and it has stuck around for millennia. However, it’s not inherently special. Egyptians once used a ten-day week, and Romans used an eight-day week before officially adopting a seven-day week in AD 321.

Still, the seven-day week is so ingrained that we may notice how days “feel.” I was recently caught off guard by a productive “Tuesday”, realizing halfway through the day that it was actually Monday. Recent research shows that a big player in the psychology of weeks is a tendency to take risks.

“Across a range of studies, we have found that response to risk changes systematically through the week. Specifically, willingness to take risks decreases from Monday to Thursday and rebounds on Friday. The surprising implication is that the outcome of a decision can depend on the day of the week on which it is taken.”…

Feels like a Tuesday: research explains why days ‘feel’ certain ways,” from Annie Rauwerda @BoingBoing. The underlying research, by Dr. Rob Jenkins, is here.

* Virgil

###

As we take a chance, we might recall that it was on this date in 1908 (a Thursday) that Thomas Etholen Selfridge became the first American to die in an airplane crash. An Army lieutenant and pilot, he was a passenger on Orville Wright’s demonstration flight of the 1908 Wright Military Flyer for the US Army Signal Corps division at Ft. Meade, Maryland. With the two men aboard, e Flyer was carrying more weight than it had ever done before…

The Flyer circled Fort Myer 4½ times at a height of 150 feet. Halfway through the fifth circuit, at 5:14 in the afternoon, the right-hand propeller broke, losing thrust. This set up a vibration, causing the split propeller to hit a guy-wire bracing the rear vertical rudder. The wire tore out of its fastening and shattered the propeller; the rudder swivelled to the horizontal and sent the Flyer into a nose-dive. Wright shut off the engine and managed to glide to about 75 feet, but the craft hit the ground nose-first. Both men were thrown forward against the remaining wires and Selfridge struck one of the wooden uprights of the framework, fracturing the base of his skull. He underwent neurosurgery but died three hours later without regaining consciousness. Wright suffered severe injuries, including a broken left thigh, several broken ribs, and a damaged hip, and was hospitalized for seven weeks…

Wikipedia

Two photographs taken of the Flyer just prior to the flight, show that Selfridge was not wearing any headgear, while Wright was only wearing a cap. Given speculation that Selfridge would have survived had he worn headgear, early pilots in the US Army were instructed to wear large heavy headgear reminiscent of early football helmets.

source

Written by (Roughly) Daily

September 17, 2021 at 1:00 am

“Do for the future what you’re grateful the past did for you. (Or what you wish the past had done for you.)”*…

A love letter to infrastructure…

The Nobel Prize–winning developmental economist Amartya Sen describes income and wealth as desirable “because, typically, they are admirable general-purpose means for having more freedom to lead the kind of lives we have reason to value. The usefulness of wealth lies in the things that it allows us to do—the substantive freedoms it helps us to achieve.” This is also a fairly good description of infrastructural systems: they’re a general-purpose means of freeing up time, energy, and attention. On a day-to-day basis, my personal freedom doesn’t come from money per se—it mostly comes from having a home where these systems are built into the walls, which became abundantly clear during the coronavirus pandemic. Stable housing and a salary that covered my utility bills meant that, with the exception of food and taking out the trash, all of my basic needs were met without my ever even having to go outside. It’s worth noting that this is an important reason why guaranteed housing for everyone is important—not just because of privacy, security, and a legible address, but also because our homes are nodes on these infrastructural networks. They are our locus of access to clean water and sewage, electricity, and telecommunications.

But the real difference between money and infrastructural systems as general-purpose providers of freedom is that money is individual and our infrastructural systems are, by their nature, collective. If municipal water systems mean that we are enduringly connected to each other through the landscape where our bodies are, our other systems ratchet this up by orders of magnitude. Behind the wheel of a car, we are a cyborg: our human body controls a powered exoskeleton that lets us move further and faster than we ever could without it. But this freedom depends on roads and supply chains for fuels, to say nothing of traffic laws and safety regulations. In researcher Paul Graham Raven’s memorable formulation, infrastructural systems make us all into collective cyborgs. Alone in my apartment, when I reach out my hand to flip a switch or turn on a tap, I am a continent-spanning colossus, tapping into vast systems that span thousands of miles to bring energy, atoms, and information to my household. But I’m only the slenderest tranche of these collective systems, constituting the whole with all the other members of our federated infrastructural cyborg bodies.

The philosopher John Rawls once offered up a thought experiment, building on the classic question: How best should society be ordered? His key addition was the concept of a “veil of ignorance”: not just that you would live in the society you designed, but that you wouldn’t know ahead of time what role you would have within it. So, while you might want to live in a world where you are an absolute ruler whose every whim is fulfilled by fawning minions, the veil of ignorance means that there is no guarantee you wouldn’t be one of the minions—in fact, given the numerical odds, it’s a lot more likely. Positing a veil of ignorance is a powerful tool to consider more equitable societies.

Seen from this perspective, shared infrastructural systems provide for the basic needs of—and therefore grant agency to—members of a community in a way that would satisfy Rawls. Universal provision of water, sewage, electricity, access to transportation networks that allow for personal mobility, and broadband internet access creates a society where everyone—rich or poor, regardless of what you look like or believe—has access to at least a baseline level of agency and opportunity.

But here’s the kicker: it’s not a thought experiment. We’ve all passed through Rawls’s veil of ignorance. None of us chooses the circumstances of our birth. This is immediate and inarguable if you’re the child of immigrants. If one of the most salient facts of my life is that I was born in Canada, it’s also obvious that I had nothing to do with it. But it’s equally true for the American who proudly traces their family back to ancestors who came over on the Mayflower, or the English family whose landholdings are listed in the Domesday Book. Had I been born in India, my infrastructural birthright would have been far less robust as an underpinning for the life of agency and opportunity that I am fortunate to live, which stems in large part from the sheer blind luck (from my perspective) of being born in Canada.

Our infrastructural systems are the technological basis of the modern world, the basis for a level of global wealth and personal agency that would have been unthinkable only a few centuries ago. But those of us who have been fortunate enough to live as part of a collective cyborg have gained our personal agency at an enormous moral cost. And now anthropogenic climate change is teaching us that there are no others, no elsewhere.

For millennia, these systems have been built out assuming a steady, predictable landscape, allowing us to design long-lived networks where century-old aqueducts underlay new college campuses. But this predictability is becoming a thing of the past. More heat in the atmosphere means warmer weather and shifting climates, with attendant droughts, wildfires, and more frequent and severe hurricanes. But it also increases uncertainty: as the effects of greenhouse gases compound, we may reach tipping points, trigger positive feedback loops, and face other unprecedented changes to climates. Engineers can’t design systems to withstand hundred-year storms when the last century provides little guide to the weather of the next. No matter where in the world you reside, this is the future we will all have to live in. The only question that remains is what kind of world we want to build there.

Our shared infrastructural systems are the most profound and effective means that we’ve created to both relieve the day-to-day burdens of meeting our bodies’ needs and to allow us to go beyond their physiological limits. To face anthropogenic climate change is to become a civilization that can respond to this shifting, unpredictable new world while maintaining these systems: if you benefit from them today, then any future in which they are compromised is recognizably a dystopia. But that “dystopia” is where most of the world already lives. To face anthropogenic climate change ethically is to do so in a way that minimizes human suffering.

Mitigation—limiting the amount of warming, primarily through decarbonizing our energy sources—is one element of this transition. But the true promise of renewable energy is not that it doesn’t contribute to climate change. It’s that renewable energy is ubiquitous and abundant—if every human used energy at the same rate as North Americans, it would still only be a tiny percentage of the solar energy that reaches the Earth. Transforming our energy systems, and the infrastructural systems that they power, so that they become sustainable and resilient might be the most powerful lever that we have to not just survive this transition but to create a world where everyone can thrive. And given the planetwide interconnectedness of infrastructural systems, except in the shortest of short terms, they will be maintained equitably or not at all.

Ursula Franklin wrote, “Central to any new technology is the concept of justice.” We can commit to developing the technologies and building out new infrastructural systems that are flexible and sustainable, but we have the same urgency and unparalleled opportunity to transform our ultrastructure, the social systems that surround and shape them. Every human being has a body with similar needs, embedded in the material world at a specific place in the landscape. This requires a different relationship with each other, one in which we acknowledge and act on how we are connected to each other through our bodies in the landscapes where we find ourselves. We need to have a conception of infrastructural citizenship that includes a responsibility to look after each other, in perpetuity. And with that, we can begin to transform our technological systems into systems of compassion, care, and resource-sharing at all scales, from the individual level, through the level of cities and nations, all the way up to the global.

Our social relationships with each other—our culture, our learning, our art, our shared jokes and shared sorrow, raising our children, attending to our elderly, and together dreaming of our future—these are the essence of what it means to be human. We thrive as individuals and communities by caring for others, and being taken care of in turn. Collective infrastructural systems that are resilient, sustainable, and globally equitable provide the means for us to care for each other at scale. They are a commitment to our shared humanity.

Bodies, agency, and infrastructure: “Care At Scale,” from Debbie Chachra (@debcha), via the indispensable Exponential View (@ExponentialView). Eminently worth reading in full.

See also: “Infrastructure is much more important than architecture“; and resonantly, “Kim Stanley Robinson: a climate plan for a world in flames.”

* Danny Hillis’ “Golden Rule of Time,” as quoted by Stewart Brand in Whole Earth Discipline

###

As we build foundations, we might recall that it was on this date in 1904 that the first balloon used for meteorologic research in the U.S. was released near St. Louis, Missouri. The balloon carried instruments that measured barometric pressure, temperature, and humidity, that returned to Earth when the balloon burst.

The first weather balloon was launched in France in 1892. Prior to using balloons, the U.S. used kites tethered by piano wire– the downsides being the limited distance kites could ascend (less than 2 miles), the inability to use them if the wind was too light or too strong, and potential for the kites to break away.

Since this first launch, millions of weather balloons have been launched by the National Weather Service and its predecessor organizations.

source

Written by (Roughly) Daily

September 15, 2021 at 1:00 am

“Food is an important part of a balanced diet”*…

In your quest to eat right, are you an a nutritionist or an essentialist?

Nutrition science began with the chemical description of proteins, fats and carbohydrates in the 19th century. The field didn’t seem to hold much medical import; the research was mostly aimed at cheaply feeding poor and institutionalised people well enough to keep them from rioting. Germ theory, on the other hand, was new and revolutionary medical science, and microbiologists such as Louis Pasteur were demonstrating that one disease after another, from cholera to malaria to leprosy, was caused by microbes. But at the turn of the 20th century, nutrition science suddenly arrived as a major part of our understanding of human health…

In 1911, the Polish chemist Casimir Funk announced that he’d isolated the beriberi-preventing chemical, which he thought to be a molecule containing an amine group, and named it ‘vitamine’ – a vital amine. The next year, Funk published an ambitious paper and book arguing that not only beriberi but three other human diseases – scurvy, pellagra and rickets – were each caused by a lack of a particular vitamin. Within a few months, the English researcher Frederick Hopkins published the results of a series of experiments in which he fed animals diets based on pure proteins, carbohydrates and fats, after which they developed various ailments. He posited that the simplified diets lacked some ‘accessory food factors’ important for health. Those factors and many others were discovered over the next three decades, and researchers showed how these vitamins were critical to the function of practically every part of the body. Ten of those scientists, including Eijkman and Hopkins, won Nobel prizes. At the same time that physicists laid out the theories of general relativity and quantum mechanics, describing fundamental laws that governed the Universe on its smallest and largest scales, chemists discovered the laws that seemed to govern the science of nutrition.

[… which, over the last 100 years, has exploded…]

[Gyorgy Scrinis, a professor of food politics and policy at the University of Melbourne] argues that the field of nutrition science is under the sway of an ideology he dubbed ‘nutritionism’, a mode of thinking about food that makes a number of erroneous assumptions: it reduces foods to quantified collections of nutrients, pulls foods out of the context of diets and lifestyles, presumes that biomarkers such as body-mass index are accurate indicators of health, overestimates scientists’ understanding of the relationship between nutrients and health, and falls for corporations’ claims that the nutrients they sprinkle into heavily processed junk foods make them healthful. These errors lead us toward food that is processed to optimise its palatability, convenience and nutrient profile, drawing us away from the whole foods that Scrinis says we should be eating. He says the history of margarine provides a tour of the perils of nutritionism: it was first adopted as a cheaper alternative to butter, then promoted as a health food when saturated fat became a nutritional bugbear, later castigated as a nutritional villain riddled with trans fats, and recently reformulated without trans fats, using new processes such as interesterification. That has succeeded in making margarine look better, according to nutritionism’s current trends, but is another kind of ultra-processing that’s likely to diminish the quality of food….

While Scrinis cites the growing body of scientific research implicating modern food processing, he also supports his critique of nutritionism with appeals to intuition. ‘This idea that ultra-processed foods are degraded – we’ve always known this,’ he says. ‘Our senses tell us whole foods are wholesome. People know this intuitively. The best foods in terms of cuisine are made from whole foods, not McDonald’s. It’s common sense.’

Even as nutritionism pushes us to believe that the latest nutrition research reveals something important about food, we also hold on to a conflicting concept: the idea that natural foods are better for us in ways that don’t always show up in scientific studies – that whole foods contain an inherent essence that is despoiled by our harsh modern processing techniques. ‘It’s a general attitude that you can break foods down that is the problem,’ says Scrinis. ‘It’s showing no respect for the food itself.’ This idea of respecting food reveals an underlying perspective that is essentialist, which, in philosophy, is the Platonic view that certain eternal and universal characteristics are essential to identity. Science is usually thought of as the antithesis of our atavistic intuitions, yet nutrition science has contained an essentialist view of nutrition for almost a century.

Most of us carry both ideologies, essentialism and nutritionism, in our minds, pulling us in different directions, complicating how we make decisions about what to eat. This tension is also visible in nutrition. Many government public health agencies give precise recommendations, based on a century of hard research, for the amounts of every nutrient we need to keep us healthy. They also insist that whole foods, especially fruits and vegetables, are the best ways to get those nutrients. But if you accept the nutrient recommendations, why assume that whole foods are a better way of getting those nutrients than, say, a powdered mix that is objectively superior in terms of cost, convenience and greenhouse emissions? What’s more, powdered mixes make it far easier for people to know exactly what they’re eating, which addresses one problem that constantly vexes nutritionists.

This kind of reflexive preference for natural foods can sometimes blind us to the implications of science. Even as research piles up implicating, for instance, excessive sugar as a particular problem in modern diets, most nutrition authorities refuse to endorse artificial sweeteners as a way to decrease our sugar consumption. ‘I’ve spent a lot of time with artificial sweeteners, and I cannot find any solid evidence there’s anything wrong with including them in your diet,’ says Tamar Haspel, a Washington Post columnist who has been writing about nutrition for more than 20 years. She says there’s some evidence that low-calorie sweeteners help some people lose weight, but you won’t hear that from nutrition authorities, who consistently minimise the positives while focusing on potential downsides that have not been well-established by research, such as worries that they cause cancer or scramble the gut microbiome. Why the determined opposition? ‘Because artificial sweeteners check lots of the boxes of the things that wholesome eaters avoid. It’s a chemical that’s manufactured in a plant. It’s created by the big companies that are selling the rest of the food in our diet, a lot of which is junk.’ Haspel says that nutritionists’ attitude to low-calorie sweeteners is ‘puritanical, it’s holier-than-thou, and it’s breathtakingly condescending’. The puritanical response reflects the purity of essentialism: foods that are not ‘natural’ are not welcome in the diets of right-thinking, healthy-eating people…

Our arguments over food are so polarised because they are not only about evidence: they are about values. Our choice of what we put inside us physically represents what we want inside ourselves spiritually, and that varies so much from person to person. Hearn uses food, much of it from a blender, to hack his body and keep him well-fuelled between business meetings. Scrinis looks forward to spending time in his kitchen, tinkering with new varieties of sourdough packed with sprouted grains and seeds. Haspel lives in Cape Cod, where she grows oysters, raises chickens, and hunts deer for venison – and also drinks diet soda and uses sucralose in her smoothies and oatmeal, to help keep her weight down.

Nutritionism and essentialism provide comfortingly clear perspectives about what makes food healthful. But an open-minded look at the evidence suggests that many of the most hotly debated questions about nutrition are impossible to answer with the information we have, maybe with the information we will ever have in the foreseeable future. If we isolate nutrients and eat them in different forms than they naturally come in, how will they affect us? Can processed foods be made in ways to approach or even surpass the healthfulness of natural whole foods?…

Human bodies are so fascinating in part because they are so variable and malleable. Beyond some important universals, such as the vitamins discovered a century ago, different people’s bodies work differently, because of their genes, behaviours and environments. The food we eat today changes the way our bodies work tomorrow, making yesterday’s guidance out of date. There are too many variables and too few ways to control them…

Maybe the reason that diet is so difficult to optimise is that there is no optimal diet. We are enormously flexible omnivores who can live healthily on varied diets, like our hunter-gatherer ancestors or modern people filling shopping carts at globally sourced supermarkets, yet we can also live on specialised diets, like traditional Inuits who mostly ate a small range of Arctic animals or subsistence farmers who ate little besides a few grains they grew. Aaron Carroll, a physician in Indiana and a columnist at The New York Times, argues that people spend far too much time worrying about eating the wrong things. ‘The “dangers” from these things are so very small that, if they bring you enough happiness, that likely outweighs the downsides,’ he said in 2018. ‘So much of our food discussions are moralising and fear-inducing. Food isn’t poison, and this is pretty much the healthiest people have even been in the history of mankind. Food isn’t killing us.’

Food is a vehicle for ideologies such as nutritionism and essentialism, for deeply held desires such as connecting with nature and engineering a better future. We argue so passionately about food because we are not just looking for health – we’re looking for meaning. Maybe, if meals help provide a sense of meaning for your life, that is the healthiest thing you can hope for.

Vitamins or whole foods? high-fat or low-fat? sugar or sweetener?… Will we ever get a clear idea about what we should eat? “The Food Wars,” from Amos Zeeberg (@settostun)

[image above: source]

* Fran Lebowitz

###

As we scale the food pyramid, we might send birthday greetings in oyster sauce to Joyce Chen; she was born on this date in 1917.  A chef, restauranteur, author, television personality, and entrepreneur, she parlayed a successful Cambridge, MA restaurant (where she’s credited with creating the “all you can eat Chinese buffet” to perk up slow Tuesdays and Wednesdays) into a collection of restaurants, a cooking school, a series of cookbooks, and a PBS series (shot on the same set as Julia Child’s show).  She is credited with popularizing northern-style Chinese cuisine in America.  Chen was honored in 2014 (along with Julia Child) as one of the five chefs featured on a series of U.S. postage stamps.

 source

Written by (Roughly) Daily

September 14, 2021 at 1:00 am

“The most exciting phrase to hear in science, the one that heralds the most discoveries, is not ‘Eureka!’ (I found it!) but ‘That’s funny…'”*…

It’s that time again: the IgNobel Prizes for 2021 have been awarded!

An experiment that hung rhinoceroses upside down to see what effect it had on the animals has been awarded one of this year’s Ig Nobel prizes.

Other recipients included teams that studied the bacteria in chewing gum stuck to pavements, and how to control cockroaches on submarines.

The ceremony couldn’t take place at its usual home of Harvard University in the US because of Covid restrictions. All the fun occurred online instead.

The science humour magazine, Annals of Improbable Research, says its Ig Nobel awards should first make you laugh but then make you think.

And the rhino study, which this year wins the award for transportation research, does exactly this. What could seem more daft than hanging 12 rhinos upside down for 10 minutes?

But wildlife veterinarian Robin Radcliffe, from Cornell University, and colleagues did exactly this in Namibia because they wanted to know if the health of the animals might be compromised when slung by their legs beneath a helicopter. It’s an activity that increasingly has been used in African conservation work to shift rhinos between areas of fragmented habitat.

However, no-one had done the basic investigation to check that the tranquillised animals’ heart and lung function coped with upside-down flying, said Robin. He told BBC News: “Namibia was the first country to take a step back and say, ‘hey, let’s study this and figure out, you know, is this a safe thing to do for rhinos?”

As has become customary with the Ig Nobels, the prizes on the night were handed out by real Nobel laureates, including Frances Arnold (chemistry, 2018), Carl Weiman (physics, 2001), and Eric Maskin (economics, 2007).

The winners got a trophy they had to assemble themselves from a PDF print-out and a cash prize in the form of a counterfeit 10 trillion dollar Zimbabwean banknote…

For more on the very real importance of the rhino research, and a complete list of other winners, e.g.,

Biology Prize: Susanne Schötz, for analysing variations in purring, chirping, chattering, trilling, tweedling, murmuring, meowing, moaning, squeaking, hissing, yowling, howling, growling, and other modes of cat-human communication.

… see “Upside-down rhino research wins Ig Nobel Prize.

* Isaac Asimov

###

As we take our knowledge where we find it, we might might recall that it was on this date in 1962 that president John F. Kennedy gave what has become known as the “space speech.” Officially titled “the Address at Rice University on the Nation’s Space Effort,” it characterized space as a new frontier, in an attempt to win support for the Apollo program, the national effort to land a man on the Moon.

We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too. It is for these reasons that I regard the decision last year to shift our efforts in space from low to high gear as among the most important decisions that will be made during my incumbency in the office of the Presidency.

The full text of his speech (and video clips) are here.

Kennedy speaking at Rice

source

Written by (Roughly) Daily

September 12, 2021 at 1:00 am

%d bloggers like this: