(Roughly) Daily

Posts Tagged ‘chemistry

“In every grain of sand there is the story of the earth”*…

 

Green sand

 

A pair of palm-tree-fringed coves form two narrow notches, about a quarter of a mile apart, along the shoreline of an undisclosed island somewhere in the Caribbean.

After a site visit in early March, researchers with the San Francisco nonprofit Project Vesta determined that the twin inlets provided an ideal location to study an obscure method of capturing the carbon dioxide driving climate change.

Later this year, Project Vesta plans to spread a green volcanic mineral known as olivine, ground down to the size of sand particles, across one of the beaches. The waves will further break down the highly reactive material, accelerating a series of chemical reactions that pull the greenhouse gas out of the air and lock it up in the shells and skeletons of mollusks and corals.

This process, along with other forms of what’s known as enhanced mineral weathering, could potentially store hundreds of trillions of tons of carbon dioxide, according to a National Academies report last year. That’s far more carbon dioxide than humans have pumped out since the start of the Industrial Revolution. Unlike methods of carbon removal that rely on soil, plants, and trees, it would be effectively permanent. And Project Vesta at least believes it could be cheap, on the order of $10 per ton of stored carbon dioxide once it’s done on a large scale.

But there are huge questions around this concept as well…

Scientists are taking a harder look at using carbon-capturing rocks to counteract climate change, but lots of uncertainties remain: “How green sand could capture billions of tons of carbon dioxide.”

* Rachel Carson

###

As we contemplate carbon, we might send airy birthday greetings to F. Sherwood Rowland; he was born on this date in 1927.  A chemist whose research focused on atmospheric chemistry and chemical kinetics, he is best-remembered for his discovery that chlorofluorocarbons contribute to ozone depletion– for which he shared the 1995 Nobel Prize for Chemistry.

F._Sherwood_Rowland source

 

“Matter is energy waiting to happen”*…

 

matter abstractions-a-442

 

Chad Mirkin didn’t set out to discover a new property in matter. But when you’re inventing an alternative to atom-based chemistry, something strange is bound to happen…

While studying materials made from DNA-coated nanoparticles, researchers found a new form of matter– lattices in which smaller particles roam like electrons in metallic bonds: “Strange Metal-like Bonds Discovered in Customized Crystals.”

* Bill Bryson, A Short History of Nearly Everything

###

As we muse on matter, we might send irradiated birthday greetings to Irène Joliot-Curie; she was born on this date in 1897.  The daughter of Marie Curie and Pierre Curie and the wife of Frédéric Joliot-Curie, she shared a Nobel Prize with her husband for their joint discovery of artificial radioactivity (making the Curies the family with the most Nobel laureates to date).  Both children of the Joliot-Curies, Hélène and Pierre, are also esteemed scientists.

Like her mother, Irène died of leukemia, likely resulting from radiation exposure during her research.

220px-Irène_Joliot-Curie_Harcourt source

 

Written by LW

September 12, 2019 at 1:01 am

“For I have trained myself and am training myself always to be able to dance lightly in the service of thought”*…

 

dance

For the last 11 years, Science and the AAAS have hosted Dance Your Ph.D., a contest that challenges scientists around the world to explain their research through the most jargon-free medium available: interpretive dance. [see here and here]

This years winners have been announced:

Scientific research can be a lonely pursuit. And for Pramodh Senarath Yapa, a physicist at the University of Alberta in Edmonton, Canada, even the subject of his research is lonely: singleton electrons wandering through superconducting material. “Superconductivity relies on lone electrons pairing up when cooled below a certain temperature,” Yapa says. “Once I began to think of electrons as unsociable people who suddenly become joyful once paired up, imagining them as dancers was a no-brainer!”

Six weeks of choreographing and songwriting later, Yapa scooped the 2018 “Dance Your Ph.D.” contest. The judges—a panel of world-renowned artists and scientists—chose Yapa’s swinging electron dance from 50 submissions based on both artistic and scientific merits. He takes home $1000 and immortal geek fame…

Learn more, and see other category winners at “The winner of this year’s ‘Dance Your Ph.D.’ contest turned physics into art.”

* Søren Kierkegaard

###

As we tempt Terpsichore, we might spare a thought for Glenn Theodore Seaborg; he died o this date in 1999.  A chemist, his discovery and investigation of plutonium and nine other transuranium elements was part of the effort during World War II to develop an atomic bomb; it earned him a share of the 1951 Nobel Prize in Chemistry.

Seaborg went on to serve as Chancellor of the University of California, as Chair of the Atomic Energy Commission, and as an advisor to 10 presidents– from Harry S. Truman to Bill Clinton– on nuclear policy and science education.  Element 106 (the last of the ten that Seaborg discovered), was named seaborgium in his honor.

Like so many of the scientists who worked on the Manhattan Project, Seaborg became a campaigner for arms control.  He was a signatory to the Franck Report and contributed to the Limited Test Ban Treaty, the Nuclear Non-Proliferation Treaty and the Comprehensive Test Ban Treaty.

 source

 

Written by LW

February 25, 2019 at 1:01 am

“In Nature’s infinite book of secrecy I can read a little”*…

 

shakespeare science

 

Shakespeare explores the philosophical, psychological, and cultural impact of many more scientific fields besides human anatomy, reflecting poetically on theories about germs, atoms, matter, falling bodies, planetary motion, heliocentrism, alchemy, the humors, algebra, Arabic numerals, Pythagorean geometry, the number zero, and the infinite. The inquiries that drove Renaissance science, and the universe it disclosed, are deeply integrated into Shakespeare’s poetic worlds.

Until relatively recently, Shakespeare’s contact with the scientific world has gone largely unnoticed both among scholars and general audiences. Perhaps Shakespeare scholars and audiences don’t notice the way he takes up science because they are unfamiliar with much of the science he was exposed to, while most scientists don’t see Shakespeare as valuable for reflecting on science because they assume he was unfamiliar with it. Usually, even when readers are made aware of Shakespeare’s references to this or that scientific subject — perhaps Hamlet’s reference to infinity or Lear’s allusions to atomism — these are treated as little more than interesting artifacts, window-dressing to Shakespeare’s broader human concerns.

A small but growing number of scholars are now taking up the connection between Shakespeare and science. And, spurred perhaps by science fiction, by the ways that science factors in the works of key late-modern writers such as Nabokov, Pynchon, and Wallace, and by the rise of scientific themes in contemporary literary fiction, a growing number of readers are aware that writers can and do take up science, and many are interested in what they do with it.

When we familiarize ourselves with the history of science, we see the imaginative worlds Shakespeare creates to demonstrate science’s power to shape our self-understanding, and the power of the literary arts to shape our response to science. We also see that Shakespeare was remarkably prescient about the questions that science would raise for our lives. He explores, for example, how we are personally affected by the uncertainties that cosmological science can introduce, or what it means when scientists claim that our first-hand experience is illusory, or how we respond when science probes into matters of the heart…

He was a poet of Copernican astronomy before the telescope, of microbiology before the modern microscope.  What can we learn from the Bard’s vision of cosmic upheaval?  Explore at:  “Shakespeare’s Worlds of Science.”

* Shakespeare, Antony and Cleopatra

###

As we put it all into perspective, we might spare a thought for Andreas Libavius; he died on this date in 1616.  A rough contemporary of Shakespeare’s, Libavius was a celebrated physician and chemist, the author of over 40 works in the fields of logic, theology, physics, medicine, chemistry, pharmacy, and poetry.  At the same time– and in a way that reflected the fuzzy boundary between the emerging empirical sciences and the occult– he was one of the leading alchemical thinkers of his time: his 1597 Alchymia was the first systematic chemistry textbook, in which he showed, for example, that cuprous salt lotions are detectable with ammonia (which causes them to change color to dark blue)… and in which he also described the possibility of transmutation (the conversion of base metals into gold).

220px-Andreas_Libavius source

 

Written by LW

July 25, 2018 at 1:01 am

“Everyone knows Newton as the great scientist. Few remember that he spent half his life muddling with alchemy, looking for the philosopher’s stone. That was the pebble by the seashore he really wanted to find”*…

 

Alchemist Heating a Pot, by David Teniers the Younger (1610 – 1690

Alchemy is one of the most curious subjects in the history of science–it evokes both method and magic in popular imagination. Teniers brilliantly juxtaposes light and shadow in his paintings, leaving the viewer unsure just how illuminating alchemy really is.

Alchemy was practiced in Europe as early as the 1300s and, by the seventeenth century, it had reached in zenith. It was a precursor to modern chemistry, and the methods and instruments that are historically tied to alchemy had a significant impact on the development of scientific tools. (As a historical note, in the seventeenth century, alchemy and chemistry were extremely fluid scientific practices; many contemporary historians of science opt to refer to the science as chymistry to connote the mutability of the two practices.)

At its very core, alchemy focused on the notion of transmutation–the ability of one element to morph into another, especially the ability to turn elements into gold. (If Rumpelstiltskin had only been so lucky!) In order to understand elements on their most basic level—in order to extrapolate how to transmute one into another—alchemy focused its experimental efforts on the processes of distillation, sublimation, and crystallization and how they affected different materials. Exploring these processes, however, required sophisticated tools and technologies as well as scientific means and methods…

Lydia Pine takes us “Inside the Alchemist’s Workshop.”

* Fritz Leiber

###

As we go for the gold, we might send elemental birthday greetings to Glenn Theodore Seaborg; he was born on this date in 1912.  A chemist, his discovery and investigation of plutonium and nine other transuranium elements was part of the effort during World War II to develop an atomic bomb; it earned him a share of the 1951 Nobel Prize in Chemistry.

Seaborg went on to serve as Chancellor of the University of California, as Chair of the Atomic Energy Commission, and as an advisor to 10 presidents– from Harry S. Truman to Bill Clinton– on nuclear policy and science education.  Element 106 (the last of the ten that Seaborg discovered), was named seaborgium in his honor.

Like so many of the scientists who worked on the Manhattan Project, Seaborg became a campaigner for arms control. He was a signatory to the Franck Report and contributed to the Limited Test Ban Treaty, the Nuclear Non-Proliferation Treaty and the Comprehensive Test Ban Treaty.

 source

 

Written by LW

April 19, 2018 at 1:01 am

%d bloggers like this: