(Roughly) Daily

Posts Tagged ‘chemistry

“You cannot store them To warm the winter’s cold, The lad that hopes for heaven shall fill his mouth with mould”*…

[Earlier this month] craving sweets, Colin Purrington remembered the Twinkies.

He’d purchased them back in 2012 for sentimental reasons when he heard that Hostess Brands was going bankrupt and Twinkies might disappear forever.

“When there’s no desserts in the house, you get desperate,” says Purrington, who went down to the basement and retrieved the old box of snack cakes, fully intending to enjoy several…

Like many people, Purrington believed Twinkies are basically immortal, although the official shelf life is 45 days. He removed a Twinkie from the box, unwrapped it — it looked fine — and took a bite. Then he retched. “It tasted like old sock,” Purrington says. “Not that I’ve ever eaten old sock.”

That’s when he examined the other Twinkies. Two looked weird. One had a dark-colored blemish the size of a quarter. The other Twinkie was completely transformed — it was gray, shrunken and wrinkly, like a dried morel mushroom.

He posted photos on Twitter, and they caught the attention of two scientists: Brian Lovett and Matt Kasson, who study fungi at West Virginia University in Morgantown. “Matt is going to want that Twinkie,” thought Lovett, the instant he saw the mummified one.

That’s because, in the past, their lab has tested how well molds grow in Peeps, the classic Easter treat. Fungi actually found it difficult to survive on Peeps, because of the food’s low water content. “In a way, they are kind of like an extreme environment, right?” Kasson notes. “The food industry has crafted the ability to make foods that have a long shelf life.

Still, Kasson says, fungi are everywhere and have an amazing set of chemical tools that let them break down all kinds of substances. “You find fungi growing on jet fuel,” he says…

They reached out to Purrington, who was only too happy to mail them the Twinkies immediately. “Science is a collaborative sport,” he says. “If someone can take this and figure out what was actually growing, I’m all in. I really want to know what species exactly was eating my Twinkies.”

The Twinkies arrived at the lab, and the researchers got to work…

The illuminating (if not appetizing) tale of “A Disturbing Twinkie That Has, So Far, Defied Science.”

* A.E. Housman

###

As we stop stockpiling snacks, we might send variously-well preserved birthday greetings to William A. Mitchell; he was born on this date in 1911.  A chemist who spent most of his career at General Foods, he was the inventor of Pop Rocks, Tang, quick-set Jell-O, Cool Whip, and powdered egg whites; over his career, he received over 70 patents almost all of them for processed food items or preparation procedures.

MITCHELL

source

Written by LW

October 21, 2020 at 1:01 am

“The Food of the Gods”*…

 

popcorn

 

From Beyond Slow Motion, “Popcorn Popping (100,000 Frames Per Second)

 

* both the title of an H.G. Wells novel and a description of the subject of today’s post.

###

As we reach for the salt, we might spare a thought for Paul Sabatier; he died on this date in 1941.  An organic chemist, he was instrumental in creating the process of hydrogenation, which allowed the development of margarine, hydrogenated oil, and synthetic methanol– two of the three of which frequently figure into the preparation and consumption of popcorn.  Sabatier’s work earned him the Nobel Prize in Chemistry in 1912.

200px-Paul_Sabatier source

 

“You are what what you eat eats”*…

 

Fruit3-1396x1536

 

Eating is paradoxically completely normal and pretty weird at the same time, once you start to think about it. We eat other beings constantly, in order to remain ourselves. In modern Western logic, the potential oddity of this situation has been dealt with for the most part by assuming that the things we eat stop being themselves after ingestion, that they become fuel or building blocks for us.

However, deep in the detailed pages of journals such as Cell Host & Microbe and Nature Reviews Endocrinology, a profound transformation is occurring in scientific ideas about food and eating that promises to undo assumptions about the relationships between eaters and what is eaten. This transformation, which we might characterize as a shift from a “machinic” to a rather hallucinogenic model of food and its incorporation, endows foodstuffs with much more agency and potency than they ever had in the standard “fuel + building blocks” model, where they were just burned and redeployed.

Rather than mere nosh, provender or raw material, food and its components are now being investigated for communicative and informational properties and for roles in gene regulation, environment sensing, maintaining physiological boundaries and adjusting cellular metabolic programs. Food speaks, cues and signals. Bodies sense and respond in complicated processes of inner conversation only dimly intuited by conscious thought.

Eating as interlocution is a conceptual development that carries with it potentially disorienting new representations of human interiority and autonomy. It is at the same time an immensely practical development, with implications for nutrition and metabolism as sites of potential technological interventions in health and longevity…

Food is being reunderstood as a currency of communication– social (a la Instagram), but more impactfully, biological: “Eating As Dialogue, Food As Technology.”

With this as background, see also: “The Future of Our Food Supply.”

Tangentially related– but entirely fascinating: “Putting Order In Its Place.”

* Michael Pollan, In Defense of Food: An Eater’s Manifesto

###

As we take a taste, we might spare a thought for William A. Mitchell; he died on this date in 2004.  A chemist who spent most of his career at General Foods, he was the inventor of Pop Rocks, Tang, quick-set Jell-O, Cool Whip, and powdered egg whites; over his career, he received over 70 patents.

MITCHELL source

 

“In every grain of sand there is the story of the earth”*…

 

Green sand

 

A pair of palm-tree-fringed coves form two narrow notches, about a quarter of a mile apart, along the shoreline of an undisclosed island somewhere in the Caribbean.

After a site visit in early March, researchers with the San Francisco nonprofit Project Vesta determined that the twin inlets provided an ideal location to study an obscure method of capturing the carbon dioxide driving climate change.

Later this year, Project Vesta plans to spread a green volcanic mineral known as olivine, ground down to the size of sand particles, across one of the beaches. The waves will further break down the highly reactive material, accelerating a series of chemical reactions that pull the greenhouse gas out of the air and lock it up in the shells and skeletons of mollusks and corals.

This process, along with other forms of what’s known as enhanced mineral weathering, could potentially store hundreds of trillions of tons of carbon dioxide, according to a National Academies report last year. That’s far more carbon dioxide than humans have pumped out since the start of the Industrial Revolution. Unlike methods of carbon removal that rely on soil, plants, and trees, it would be effectively permanent. And Project Vesta at least believes it could be cheap, on the order of $10 per ton of stored carbon dioxide once it’s done on a large scale.

But there are huge questions around this concept as well…

Scientists are taking a harder look at using carbon-capturing rocks to counteract climate change, but lots of uncertainties remain: “How green sand could capture billions of tons of carbon dioxide.”

* Rachel Carson

###

As we contemplate carbon, we might send airy birthday greetings to F. Sherwood Rowland; he was born on this date in 1927.  A chemist whose research focused on atmospheric chemistry and chemical kinetics, he is best-remembered for his discovery that chlorofluorocarbons contribute to ozone depletion– for which he shared the 1995 Nobel Prize for Chemistry.

F._Sherwood_Rowland source

 

“Matter is energy waiting to happen”*…

 

matter abstractions-a-442

 

Chad Mirkin didn’t set out to discover a new property in matter. But when you’re inventing an alternative to atom-based chemistry, something strange is bound to happen…

While studying materials made from DNA-coated nanoparticles, researchers found a new form of matter– lattices in which smaller particles roam like electrons in metallic bonds: “Strange Metal-like Bonds Discovered in Customized Crystals.”

* Bill Bryson, A Short History of Nearly Everything

###

As we muse on matter, we might send irradiated birthday greetings to Irène Joliot-Curie; she was born on this date in 1897.  The daughter of Marie Curie and Pierre Curie and the wife of Frédéric Joliot-Curie, she shared a Nobel Prize with her husband for their joint discovery of artificial radioactivity (making the Curies the family with the most Nobel laureates to date).  Both children of the Joliot-Curies, Hélène and Pierre, are also esteemed scientists.

Like her mother, Irène died of leukemia, likely resulting from radiation exposure during her research.

220px-Irène_Joliot-Curie_Harcourt source

 

Written by LW

September 12, 2019 at 1:01 am

%d bloggers like this: