(Roughly) Daily

Posts Tagged ‘Physics

“Human decision-making is complex. On our own, our tendency to yield to short-term temptations, and even to addictions, may be too strong for our rational, long-term planning.”*…

Many of us acknowledge that long-term thinking is a difficult, but necessary investment in a safe and happy future– our obligation to those who come after us. But it turns out that long-term thinking has more immediate benefits as well…

In times of global crisis, focusing on the present is justified. Yet as we move into 2021, there is good reason to spend some time also reflecting on our place within the longer-term past and future. For one, there remain creeping problems that we cannot ignore, such as climate change, antibiotic resistance or biodiversity loss. But also because contemplating deeper time can help replenish our mental energies during adversity, and offer a meditative source of catharsis amid the frenzy of the now.

In my research and writing, I explore the worldviews of nuclear waste experts in Finland, who reckon with radioactive isotopes over extremely long-term planetary timeframes. Plutonium-239 has a half-life of 24,100 years, whereas uranium-235’s half-life is over seven hundred million years. Like many anthropologists doing fieldwork within other cultures, my mission has been to uncover insights that could widen people’s perspectives in my own or other societies.

While the experiences of a nuclear waste expert may seem an unusual source of inspiration for well-being, this research has taught me that there can be personal benefits to stretching the intellect across time. Here’s how you might integrate some of these principles into your own life as you step into next year.

Doing Safety Case-inspired deep time exercises can not only help us imagine local landscapes over decades, centuries, and millennia. It can also help us take a step back from our everyday lives – transporting our minds to different places and times, and feeling rejuvenated when we return.

There are several benefits to this. Cognitive scientists have shown how creativity can be sparked by perceiving “something one has not seen before (but that was probably always there).” Corporate coaches have recommended taking breaks from our familiar thinking patterns to experience the world in new ways and overcome mental blocks. Contemplating deep time can cultivate a thoughtful appreciation of our species’ and planet’s longer-term histories and futures.

Yet it can also help us refresh during frazzled moments of unrest. Setting aside a few minutes each day for deep time contemplation can enrich us by evoking a momentary sense of awe. A Stanford University study has shown how awe can expand our sense of time and promote well-being. Anthropologist Barbara King has shown how awe can be “mind- and heart-expanding.”

Our challenge, then, is to discover, in ourselves, techniques for always bringing an awe-inspired awareness of deep time with us – wherever our futures may lead.

Taking inspiration from a far-sighted Finnish nuclear waste project, anthropologist Vincent Ialenti (@vincent_ialenti) explains why embracing Earth’s radical long-term can be good for well-being today: the benefits of embracing ‘deep time’ in a year like this.

* Peter Singer

###

As we find perspective and peace in being good ancestors, we might say alles Gute zum Geburtstag to Georg Christoph Lichtenberg; he was born on this date in 1742. Lichtenberg held the first professorship in Germany explicitly dedicated to experimental physics; he is remembered for his posthumously published notebooks, which he himself called sudelbücher, a description modelled on the English bookkeeping term “waste books” or “scrapbooks”, and for his discovery of tree-like electrical discharge patterns now called Lichtenberg figures.

One of the first scientists to introduce experiments with apparatus in their lectures, Lichtenberg was a popular and respected figure in contemporary European intellectual circles. He was one of the first to introduce Benjamin Franklin’s lightning rod to Germany by installing such devices in his house and garden sheds. He maintained relations with most of the great figures of that era, including Goethe and Kant. Ans was sought out by other leading scientists: Alessandro Volta visited Göttingen especially to see him and his experiments; mathematician Karl Friedrich Gauss sat in on his lectures.

But Lichtenberg was also an accomplished satirist, whose works put him in the highest ranks of German writers of the 18th century. And he proposed the standardized paper size system used globally today (except in Canada and the U.S.) defined by ISO 216, which has A4 as the most commonly used size.

Perhaps in time, the so-called Dark Ages will be thought of as including our own…

Georg Christoph Lichtenberg

source

“Several thousand years from now, nothing about you as an individual will matter. But what you did will have huge consequences.”*…

In 2013, a philosopher and ecologist named Timothy Morton proposed that humanity had entered a new phase. What had changed was our relationship to the nonhuman. For the first time, Morton wrote, we had become aware that “nonhuman beings” were “responsible for the next moment of human history and thinking.” The nonhuman beings Morton had in mind weren’t computers or space aliens but a particular group of objects that were “massively distributed in time and space.” Morton called them “hyperobjects”: all the nuclear material on earth, for example, or all the plastic in the sea. “Everyone must reckon with the power of rising waves and ultraviolet light,” Morton wrote, in “Hyperobjects: Philosophy and Ecology After the End of the World.” Those rising waves were being created by a hyperobject: all the carbon in the atmosphere.

Hyperobjects are real, they exist in our world, but they are also beyond us. We know a piece of Styrofoam when we see it—it’s white, spongy, light as air—and yet fourteen million tons of Styrofoam are produced every year; chunks of it break down into particles that enter other objects, including animals. Although Styrofoam is everywhere, one can never point to all the Styrofoam in the world and say, “There it is.” Ultimately, Morton writes, whatever bit of Styrofoam you may be interacting with at any particular moment is only a “local manifestation” of a larger whole that exists in other places and will exist on this planet millennia after you are dead. Relative to human beings, therefore, Styrofoam is “hyper” in terms of both space and time. It’s not implausible to say that our planet is a place for Styrofoam more than it is a place for people.

When “Hyperobjects” was published, philosophers largely ignored it. But Morton, who uses the pronouns “they” and “them,” quickly found a following among artists, science-fiction writers, pop stars, and high-school students. The international curator and art-world impresario Hans Ulrich Obrist began citing Morton’s ideas; Morton collaborated on a talk with Laurie Anderson and helped inspire “Reality Machines,” an installation by the Icelandic-Danish artist Olafur Eliasson. Kim Stanley Robinson and Jeff VanderMeer—prominent sci-fi writers who also deal with ecological themes—have engaged with Morton’s work; Björk blurbed Morton’s book “Being Ecological,” writing, “I have been reading Tim Morton’s books for a while and I like them a lot.”

The problem with hyperobjects is that you cannot experience one, not completely. You also can’t not experience one. They bump into you, or you bump into them; they bug you, but they are also so massive and complex that you can never fully comprehend what’s bugging you. This oscillation between experiencing and not experiencing cannot be resolved. It’s just the way hyperobjects are.

Take oil: nature at its most elemental; black ooze from the depths of the earth. And yet oil is also the stuff of cars, plastic, the Industrial Revolution; it collapses any distinction between nature and not-nature. Driving to the port, we were surrounded by oil and its byproducts—the ooze itself, and the infrastructure that transports it, refines it, holds it, and consumes it—and yet, Morton said, we could never really see the hyperobject of capital-“O” Oil: it shapes our lives but is too big to see.

Since around 2010, Morton has become associated with a philosophical movement known as object-oriented ontology, or O.O.O. The point of O.O.O. is that there is a vast cosmos out there in which weird and interesting shit is happening to all sorts of objects, all the time. In a 1999 lecture, “Object-Oriented Philosophy,” Graham Harman, the movement’s central figure, explained the core idea:

The arena of the world is packed with diverse objects, their forces unleashed and mostly unloved. Red billiard ball smacks green billiard ball. Snowflakes glitter in the light that cruelly annihilates them, while damaged submarines rust along the ocean floor. As flour emerges from mills and blocks of limestone are compressed by earthquakes, gigantic mushrooms spread in the Michigan forest. While human philosophers bludgeon each other over the very possibility of “access” to the world, sharks bludgeon tuna fish and icebergs smash into coastlines…

We are not, as many of the most influential twentieth-century philosophers would have it, trapped within language or mind or culture or anything else. Reality is real, and right there to experience—but it also escapes complete knowability. One must confront reality with the full realization that you’ll always be missing something in the confrontation. Objects are always revealing something, and always concealing something, simply because they are Other. The ethics implied by such a strangely strange world hold that every single object everywhere is real in its own way. This realness cannot be avoided or backed away from. There is no “outside”—just the entire universe of entities constantly interacting, and you are one of them.

… “[Covid-19 is] the ultimate hyperobject,” Morton said. “The hyperobject of our age. It’s literally inside us.” We talked for a bit about fear of the virus—Morton has asthma, and suffers from sleep apnea. “I feel bad for subtitling the hyperobjects book ‘Philosophy and Ecology After the End of the World,’ ” Morton said. “That idea scares people. I don’t mean ‘end of the world’ the way they think I mean it. But why do that to people? Why scare them?”

What Morton means by “the end of the world” is that a world view is passing away. The passing of this world view means that there is no “world” anymore. There’s just an infinite expanse of objects, which have as much power to determine us as we have to determine them. Part of the work of confronting strange strangeness is therefore grappling with fear, sadness, powerlessness, grief, despair. “Somewhere, a bird is singing and clouds pass overhead,” Morton writes, in “Being Ecological,” from 2018. “You stop reading this book and look around you. You don’t have to be ecological. Because you are ecological.” It’s a winsome and terrifying idea. Learning to see oneself as an object among objects is destabilizing—like learning “to navigate through a bad dream.” In many ways, Morton’s project is not philosophical but therapeutic. They have been trying to prepare themselves for the seismic shifts that are coming as the world we thought we knew transforms.

For the philosopher of “hyperobjects”—vast, unknowable things that are bigger than ourselves—the coronavirus is further proof that we live in a dark ecology: “Timothy Morton’s Hyper-Pandemic.”

* “Several thousand years from now, nothing about you as an individual will matter. But what you did will have huge consequences. This is the paradox of the ecological age. And it is why action to change global warming must be massive and collective.” – Timothy Morton, Being Ecological

###

As we find our place, we might send classical birthday greetings to James Clerk Maxwell; he was born on this date in 1831.  A mathematician and and physicist, he calculated (circa 1862) that the speed of propagation of an electromagnetic field is approximately that of the speed of light– kicking off his work in uniting electricity, magnetism, and light… that’s to say, formulating the classical theory of electromagnetic radiation, which is considered the “second great unification in physics” (after the first, realized by Isaac Newton). Though he was the apotheosis of classical (Newtonian) physics, Maxwell laid the foundation for modern physics, starting the search for radio waves and paving the way for such fields as special relativity and quantum mechanics.  In the Millennium Poll – a survey of the 100 most prominent physicists at the turn of the 21st century – Maxwell was voted the third greatest physicist of all time, behind only Newton and Einstein.

225px-James_Clerk_Maxwell

 source

“One of the advantages bowling has over golf is that you seldom lose a bowling ball”*…

Bowling is easy to shrug off as a mere leisure pursuit—a boozy weekend pastime in which anyone with decent hand-eye coordination can perform well enough. But hardcore bowlers have a very different take on the sport: To them it’s a physics puzzle so elaborate that it can never be mastered, no matter how many thousands of hours they spend pondering the variables that can ruin a ball’s 60-foot journey to the pins. The athletes who obsess over this complexity also understand the debt they owe to Pinel, whose career as a ball designer was just beginning when he attended the Super Hoinke in 1993. Notorious as a bit of a colorful crank, he is also the figure most responsible for transforming how bowlers think about the scientific limits of their sport.

After narrowly surviving two wrecks at a drag strip, Pinel thought it wise to find a safer way to satisfy his yen for competition. So he made the switch to bowling in 1969. He came to view the pastime as a spiritual cousin to drag racing: Both involve a few seconds of precise and rapid travel down a narrow path, and both appeal to those who relish technical conundrums. “A bowling ball is just a gyroscope that’s not on its preferred spin axis, right?” Pinel says when trying to describe his affection for the sport. “So ball motion is one gyroscope operating in the field of a bigger gyroscope, which is the earth.”

Pinel quickly taught himself the game well enough to win small purses at regional tournaments. He soon began to wonder whether he could reach the sport’s next tier by hacking his equipment. His main aim was to tease more flare potential out of a ball—in essence, reconfigure it to create a sharper hooking motion. That hook is essential because of how the sport’s pins are arrayed. There is an inches-wide “pocket” on either side of the front pin that all bowlers aim to hit at the optimum entry angle; if they manage to do so, they have a 95 percent chance of scoring a strike.

When Pinel looked into the discourse around ball performance, he found that most everyone believed that all that mattered was the quality of coverstock—that is, the exterior layer of a ball that is visible to the naked eye. Coverstocks are studded with microscopic spikes, the roughness of which is measured by the average distance from each spike’s peak to valley—a metric known as Ra. The higher a ball’s Ra, the more friction it can create with the lane and thus the greater the potential that it will hook well under the right circumstances. The hardness of the material that underlies the spikes is also an important factor. In the early 1970s, several pros had enjoyed great success by soaking their balls in methyl ethyl ketone, a flammable solvent that softened the coverstocks. (The balls became so gelatinous, in fact, that a bowler could indent the surface with a fingernail.) These softer balls gripped the lane much better than their harder counterparts, and so they tended not to skid unpredictably when encountering patches of oil used to dress the wooden boards. The use of methyl ethyl ketone had increased scores so much that rules were put in place mandating a degree of coverstock hardness as measured by a device known as a Shore durometer.

Pinel thought that too much attention was being paid to coverstocks and not nearly enough to what was inside the ball. The hearts of bowling balls, he discovered, were virtually all the same. Each had a round and centered core topped by a pancake-shaped weight block. Based on his experiences with drag racing, a sport in which the engine is every bit as important as the tires, Pinel figured he could change a ball’s dynamics by tweaking its internal structure…

And so he did. “One Man’s Amazing Journey to the Center of the Bowling Ball“: how Mo Pinel harnessed the power of physics to reshape the core of the ball– and the game of bowling itself. From Brendan Koerner (@brendankoerner)

Don Carter

###

As we roll true, we might send relaxing birthday greetings to  Edwin J. Shoemaker; he was born on this date in 1907.  In 1928, he and his cousin Edward M. Knabusch prototyped a porch chair out of some wooden slats taken from orange crates; it would automatically recline as a sitter leaned back.  Since it was a seasonal item, his sales improved when he added plush upholstery for year-round indoor use.  Still, his chairs were for the most part locally/regionally sold.  So he designed a manufacturing facility which utilized the mass-production methods of Detroit’s automotive industry– and in November of 1941 went national with the La-Z-Boy recliner.

 Edwin (left) and Edward with their original creation

source

Written by (Roughly) Daily

June 2, 2021 at 1:01 am

“The speed of time is 1 hour per hour, no matter what else is going on in the universe”*…

All the Light You See” (02017–02019) by Alicia Eggert. Photo by Ryan Strand Greenberg.

The most commonly-used noun in the English language is, according to the Oxford English Corpus, time. Its frequency is partly due to its multiplicity of meanings, and partly due to its use in common phrases. Above all, “time” is ubiquitous because what it refers to dictates all aspects of human life, from the hour we rise to the hour we sleep and most everything in between.

But what is time? The irony, of course, is that it’s hard to say. Trying to pin down its meaning using words can oftentimes feel like grasping at a wriggling fish. The 4th century Christian theologian Saint Augustine sums up the dilemma well:

But what in speaking do we refer to more familiarly and knowingly than time? And certainly we understand when we speak of it; we understand also when we hear it spoken of by another. What, then, is time? If no one asks me, I know; if I wish to explain to him who asks, I know not.

Most of us are content to live in a world where time is simply what a clock reads. The interdisciplinary artist Alicia Eggert is not. Through co-opting clocks and forms of commercial signage (billboards, neon signs, inflatable nylon of the kind that animates the air dancers in the parking lots of auto dealerships), Eggert makes conceptual art that invites us to experience the dimensions of time through the language we use to talk about it.

Her art draws on theories of time from physics and philosophy, like the inseparability of time and space and the difference between being and becoming. She expresses these oftentimes complex ideas through simple words and phrases we make use of in our everyday lives, thereby making them tangible and relatable…

From Ahmed Kabil (@ahmedkabil) and The Long Now Foundation, a (wonderfully-illustrated) appreciation of the art of Alicia Eggert (@AliciaEggert) and the questions it addresses: “How Long is Now?

Sean M. Carroll

###

As we tackle time, we might recall that it was on this date in 585 BCE that a solar eclipse occurred. According to The Histories of Herodotus, the Greek philosopher Thales of Miletus accurately predicted the event. (If Herodotus’s account is accurate, this eclipse is the earliest recorded as being known in advance of its occurrence.)

According to Herodotus, the appearance of the eclipse was interpreted as an omen, and interrupted a battle in a long-standing war between the Medes and the Lydians. The fighting immediately stopped, and they agreed to a truce. Because astronomers can calculate the dates of historical eclipses, Isaac Asimov described this battle as the earliest historical event whose date is known with precision to the day, and called the prediction “the birth of science”; any case “the eclipse of Thales” is one of the cardinal dates from which other dates can be calculated.

source

Written by (Roughly) Daily

May 28, 2021 at 1:01 am

“In the landscape of extinction, precision is next to godliness”*…

There is a portion of the sky where no spacefarer wants to go. It causes Astronauts to see shooting stars in front of their eyes, sets off emergency sensors and renders satellites useless. This Bermuda Triangle of space isn’t just a cause for concern for our future of space exploration, it could be the sign of something far more deadly. This may herald an event that last happened 42,000 years ago, which wiped out our closest relative, the Neanderthals. Welcome to the terrifying world of the South Atlantic Anomaly.

In the 80s engineers noticed that most satellite errors happened over South America and the South Atlantic. These errors ranged from minor glitches, wiped data to full-blown crashed satellites. But they couldn’t quite pinpoint what was causing these troubling errors, they named this mysterious area the South Atlantic Anomaly (SAA).

We didn’t understand the dangers of this region for a long time. When the Hubble Space Telescope first turned on in 1990 they found that the computers kept crashing and data was corrupted almost every time it flew over the South Atlantic. Not wanting their billion-dollar telescope to crash to Earth, the engineers had no choice but to switch it off every time it passed over this deadly patch of sky, and still do today. Not ideal, but it saves the telescope from this mysteriously dangerous part of space.

So what makes the South Atlantic Anomaly so dangerous? It turns out it is all down to the Sun and a crack in Earths armour caused some very bizarre geophysics.

So what does struggling satellites means for us here on Earth? Well, quite a lot really. It could be a sign of something much more deadly, a geomagnetic reversal.

When we picture the Earth’s magnetic field we often think of it as unchanging. It is our eternal armour from deadly solar radiation as well as the guide for our sailors. Even some birds have evolved iron-rich cells in their eyes, enabling them to ‘see’ the magnetic field and navigate the globe. But the magnetic north pole hasn’t always been in the north.

The magnetic poles have flipped repeatedly over the millennia. The field weakens, disappears and then reappears in the opposite direction. We know this because iron-rich lava aligns to the magnetic field and then sets, so we can look at ancient rocks and see what direction magnetic north was when it formed.

We don’t have a complete understanding of how the magnetic field is generated and why it flips. We know that convection currents of iron-rich mantle create the field, but the interactions between these immense systems are complex and hidden from us. What’s more, there are no patterns to the past flipping events, so it is very hard to predict when one will happen.

But, models and simulations show that when the field gets weaker at the beginning of a magnetic flip, it seems to happen in a random area and then grows from there. The poles also start to drift quite dramatically and chaotically. This is worrying because not only does the South Atlantic Anomaly look like the weakening in a simulation, it is also growing, and the North pole is drifting further each year.

… So, it seems at least plausible that the South Atlantic Anomaly is the start of the next geomagnetic flip. If so, it could have enormous consequences for us!

The last time a flip happened was 42,000 years ago, but it was only a temporary event, and the poles returned to their previous locations, this is known as the Laschamps Excursion, and it lasted for about a thousand years. That meant Earth was without its essential protective shield for an awfully long time.

Now, 42,000 years ago is a significant time. This was when Neanderthals died out. We (Homo Sapiens) also started using caves, red ochre body paint, and the global craze of cave painting started. It was also when a lot of ice-age megafauna died out. All of which has been linked to the flipping of the poles during this period. This extinction event and Sapien revolution has been called the Adams Event (after Douglas Adams and the infamous 42).  

This theory suggests that when the poles flipped, the Earth had a thousand years without its protective layer, so the planet was bombarded with radiation. This depleted ozone, increased radiation on the surface, messed with weather patterns and caused abrupt climate change.

Scientist even suggests that this is why we suddenly took to living in caves and using red ochre. We had to hide from the deadly rays of the Sun, and if we ventured out, we needed a powerful suncream, like powdered red ochre. This is why red ochre hand paintings became so widespread around this time.

But these immense changes hit one species particularly hard. Neanderthals were likely red-headed, light-skinned and mostly dwelt in steppes (grassy plains) and woodlands. They probably got sunburnt a lot. Unlike Homo Sapiens, it seems as though Neanderthals didn’t use red ochre much at all! All of this means that cancers would have been a deadly problem for them.

To make all this even worse, the radiation increased the strength of electrical storms, changed the weather patterns and screwed up many ecosystems. So the food that the Neanderthals hunted my have been driven away or gone extinct. It seems Neanderthals died out because they starved to death while being baked by the Sun. Meanwhile, we Homo Sapiens hid from the Sun, used weird sunscreen and adapted to new foods…

These flipping events take hundreds or thousands of years to pass due to the amount of heavy magma that needs to shift to cause a flip (however it is hypothesised it could take as little as a month in extreme circumstances). So we aren’t in any danger of waking up to a new direction for North. But, over the next few decades or hundreds of years, we will see the South Atlantic Anomaly grow and potentially be joined by many other areas of weak magnetism. We may even see some local flips in a few hundred years.

So, it seems at least plausible that the South Atlantic Anomaly is the start of the next geomagnetic flip. If so, it could have enormous consequences for us!

The South Atlantic Anomaly: Earth’s deadly weakness: “Do Failing Satellites Foretell An Imminent Extinction?” From Will Lockett (@welockett).

* Samuel Beckett

###

As we search for true north, we might send charged birthday greetings to a man whose life work could be at risk if there’s a flip (or an intense solar storm), Elihu Thomson; he was born on this date in 1853. An engineer and inventor, he was instrumental in developing the practical applications of electricity, especially alternating current. He invented electric welding and other important advances in electric lighting and power (among his lifetime total of about 700 patents). Thomson was also a cofounder of the General Electric Company (in 1892, in a merger of his Thomson-Houston Electric Company with the Edison Company.

source

%d bloggers like this: