(Roughly) Daily

Posts Tagged ‘electricity

“In the landscape of extinction, precision is next to godliness”*…

There is a portion of the sky where no spacefarer wants to go. It causes Astronauts to see shooting stars in front of their eyes, sets off emergency sensors and renders satellites useless. This Bermuda Triangle of space isn’t just a cause for concern for our future of space exploration, it could be the sign of something far more deadly. This may herald an event that last happened 42,000 years ago, which wiped out our closest relative, the Neanderthals. Welcome to the terrifying world of the South Atlantic Anomaly.

In the 80s engineers noticed that most satellite errors happened over South America and the South Atlantic. These errors ranged from minor glitches, wiped data to full-blown crashed satellites. But they couldn’t quite pinpoint what was causing these troubling errors, they named this mysterious area the South Atlantic Anomaly (SAA).

We didn’t understand the dangers of this region for a long time. When the Hubble Space Telescope first turned on in 1990 they found that the computers kept crashing and data was corrupted almost every time it flew over the South Atlantic. Not wanting their billion-dollar telescope to crash to Earth, the engineers had no choice but to switch it off every time it passed over this deadly patch of sky, and still do today. Not ideal, but it saves the telescope from this mysteriously dangerous part of space.

So what makes the South Atlantic Anomaly so dangerous? It turns out it is all down to the Sun and a crack in Earths armour caused some very bizarre geophysics.

So what does struggling satellites means for us here on Earth? Well, quite a lot really. It could be a sign of something much more deadly, a geomagnetic reversal.

When we picture the Earth’s magnetic field we often think of it as unchanging. It is our eternal armour from deadly solar radiation as well as the guide for our sailors. Even some birds have evolved iron-rich cells in their eyes, enabling them to ‘see’ the magnetic field and navigate the globe. But the magnetic north pole hasn’t always been in the north.

The magnetic poles have flipped repeatedly over the millennia. The field weakens, disappears and then reappears in the opposite direction. We know this because iron-rich lava aligns to the magnetic field and then sets, so we can look at ancient rocks and see what direction magnetic north was when it formed.

We don’t have a complete understanding of how the magnetic field is generated and why it flips. We know that convection currents of iron-rich mantle create the field, but the interactions between these immense systems are complex and hidden from us. What’s more, there are no patterns to the past flipping events, so it is very hard to predict when one will happen.

But, models and simulations show that when the field gets weaker at the beginning of a magnetic flip, it seems to happen in a random area and then grows from there. The poles also start to drift quite dramatically and chaotically. This is worrying because not only does the South Atlantic Anomaly look like the weakening in a simulation, it is also growing, and the North pole is drifting further each year.

… So, it seems at least plausible that the South Atlantic Anomaly is the start of the next geomagnetic flip. If so, it could have enormous consequences for us!

The last time a flip happened was 42,000 years ago, but it was only a temporary event, and the poles returned to their previous locations, this is known as the Laschamps Excursion, and it lasted for about a thousand years. That meant Earth was without its essential protective shield for an awfully long time.

Now, 42,000 years ago is a significant time. This was when Neanderthals died out. We (Homo Sapiens) also started using caves, red ochre body paint, and the global craze of cave painting started. It was also when a lot of ice-age megafauna died out. All of which has been linked to the flipping of the poles during this period. This extinction event and Sapien revolution has been called the Adams Event (after Douglas Adams and the infamous 42).  

This theory suggests that when the poles flipped, the Earth had a thousand years without its protective layer, so the planet was bombarded with radiation. This depleted ozone, increased radiation on the surface, messed with weather patterns and caused abrupt climate change.

Scientist even suggests that this is why we suddenly took to living in caves and using red ochre. We had to hide from the deadly rays of the Sun, and if we ventured out, we needed a powerful suncream, like powdered red ochre. This is why red ochre hand paintings became so widespread around this time.

But these immense changes hit one species particularly hard. Neanderthals were likely red-headed, light-skinned and mostly dwelt in steppes (grassy plains) and woodlands. They probably got sunburnt a lot. Unlike Homo Sapiens, it seems as though Neanderthals didn’t use red ochre much at all! All of this means that cancers would have been a deadly problem for them.

To make all this even worse, the radiation increased the strength of electrical storms, changed the weather patterns and screwed up many ecosystems. So the food that the Neanderthals hunted my have been driven away or gone extinct. It seems Neanderthals died out because they starved to death while being baked by the Sun. Meanwhile, we Homo Sapiens hid from the Sun, used weird sunscreen and adapted to new foods…

These flipping events take hundreds or thousands of years to pass due to the amount of heavy magma that needs to shift to cause a flip (however it is hypothesised it could take as little as a month in extreme circumstances). So we aren’t in any danger of waking up to a new direction for North. But, over the next few decades or hundreds of years, we will see the South Atlantic Anomaly grow and potentially be joined by many other areas of weak magnetism. We may even see some local flips in a few hundred years.

So, it seems at least plausible that the South Atlantic Anomaly is the start of the next geomagnetic flip. If so, it could have enormous consequences for us!

The South Atlantic Anomaly: Earth’s deadly weakness: “Do Failing Satellites Foretell An Imminent Extinction?” From Will Lockett (@welockett).

* Samuel Beckett

###

As we search for true north, we might send charged birthday greetings to a man whose life work could be at risk if there’s a flip (or an intense solar storm), Elihu Thomson; he was born on this date in 1853. An engineer and inventor, he was instrumental in developing the practical applications of electricity, especially alternating current. He invented electric welding and other important advances in electric lighting and power (among his lifetime total of about 700 patents). Thomson was also a cofounder of the General Electric Company (in 1892, in a merger of his Thomson-Houston Electric Company with the Edison Company.

source

“Man tends to define in terms of the familiar. But the fundamental truths may not be familiar.”*…

Most of us probably do not need to think too hard to distinguish living things from the “non-living”. A human is alive; a rock is not. Easy!

Scientists and philosophers do not see things quite this clearly. They have spent millennia pondering what it is that makes something alive. Great minds from Aristotle to Carl Sagan have given it some thought – and they still have not come up with a definition that pleases everyone. In a very literal sense, we do not yet have a “meaning” for life.

If anything, the problem of defining life has become even more difficult over the last 100 years or so. Until the 19th Century one prevalent idea was that life is special thanks to the presence of an intangible soul or “vital spark”. This idea has now fallen out of favour in scientific circles. It has since been superseded by more scientific approaches. Nasa, for instance, has described life as “a self-sustaining chemical system capable of Darwinian evolution”.

But Nasa’s is just one of many attempts to pin down all life with a simple description. In fact, over 100 definitions of life have been proposed, with most focusing on a handful of key attributes such as replication and metabolism.

To make matters worse, different kinds of scientist have different ideas about what is truly necessary to define something as alive. While a chemist might say life boils down to certain molecules, a physicist might want to discuss thermodynamics…

A comparative survey of the definitions that currently exist concludes…

To properly define life, we might need to find some aliens.

The irony is that attempts to pin down a definition of life before we discover those aliens might actually make them more difficult to find. What a tragedy it would be if in the 2020s the new Mars rover trundles straight past a Martian, simply because it does not recognise it as being alive.

“The definition can actually hinder the search for novel life,” says [Carol] Cleland. “We need to get away from our current concept, so that we are open to discovering life as we don’t know it.”

It is surprisingly difficult to pin down the difference between living and non-living things: “There are over 100 definitions of ‘life’ and all are wrong.

* Carl Sagan

###

As we strive for beginner’s mind, we might send exploratory birthday greetings to John Theophilus Desaguliers; he was born on this date in 1683. A natural philosopher, clergyman, and engineer, he is best remembered as the experimental assistant to Isaac Newton, who went on to popularize Newton’s work in public lectures and publications. On the strength of that work, Desaguliers was elected to the Royal Society and ultimately became its curator.

In his own work he coined the terms conductor and insulator. He repeated and extended the work of Stephen Gray in electricity. He proposed a scheme for heating vessels such as salt-boilers by steam instead of fire. And he made inventions of his own (e.g., a planetarium), and material improvements to others’ machines, such as Thomas Savery’s steam engine (by adding a safety valve and using an internal water jet to condense the steam in the displacement chambers) and a ventilator at the House of Commons. 

source

“Electricity is really just organized lightning”*…

A diagram from Galvani’s De viribus electricitatis in motu musculari commentarius, 1791.

In Mary Shelley’s Frankenstein, written in 1818, the young Victor Frankenstein becomes obsessed with the idea that electricity is a kind of fluid that endows living things with their life force. This obsession leads to tragedy.

Shelley’s view of electricity was, in fact, not an uncommon perspective at the time: just a few decades earlier the Italian scientist Luigi Galvani had shown that a shock of static electricity applied to the legs of a dismembered frog would cause the legs to kick. Galvani concluded that there existed a kind of “animal electric fluid” that was responsible for the animation of living creatures.

In the two hundred years since Frankenstein our view of electricity has certainly evolved, as has our ability to generate and control electric currents. But do we really understand what we’re doing? Do we even know what electricity is?

Physicist Brian Skinner (@gravity_levity) explains “Here’s why we don’t understand what electricity is.”

Pair with “Bruno Latour, the Post-Truth Philosopher, Mounts a Defense of Science.”

* George Carlin

###

As we plug in, we might send really fast birthday greetings to Leon Cooper; he was born on this date in 1930. A physicist, he shared the Nobel Prize in 1972 (with John Bardeen and John Robert Schrieffer) for contributing the concept of Cooper electron pairs which forms the basis of the BCS (their initials) theory of superconductivity. He is also one of the the namesakes and co-developers of the BCM theory of synaptic plasticity.

He went on to become a cofounder and co-chairman of Nestor, Inc., a company that applies neural-network systems to complex applications. The company built computer-based adaptive pattern-recognition and risk-assessment systems that could, for example, accurately classify complex patterns in sonar, radar or imaging systems. He also founded and was director of Brown University’s Institute for Brain and Neural Systems, which develops cognitive pharmaceuticals and intelligent systems for electronics, automobiles and communications.

The character “Sheldon Cooper” in Big Bang Theory is partially named for Cooper.

source

“Not taking risks one doesn’t understand is often the best form of risk management”*…

 

climate and risk

 

Jerry Taylor is the CEO of the Niskanen Center.  A veteran of conservative and libertarian think tanks (including the infamous ALEC) who spent much of his career working to thwart climate change mitigation moves, he has had a change of heart…

I spent the better part of my professional life (1991-2014) working at a libertarian think tank—the Cato Institute—arguing against climate action. As Cato’s director of Natural Resource Studies (and later, as a senior fellow and eventually vice president), I maintained that, while climate change was real, the impacts would likely prove rather modest and that the cost of reducing greenhouse gas emissions would greatly exceed the benefits.

I changed my mind about that, however, because (among other things) I changed my mind about risk management.

If we think about climate risks in the same fashion we think about risks in other contexts, we should most certainly hedge—and hedge aggressively—by removing fossil fuels from the economy as quickly as possible.

Let me explain…

And so he does, at “What Changed My Mind About Climate Change?

* Raghuram G. Rajan

###

As we struggle to be good ancestors, we might recall that it was on this date (as nearly as scholars can mark it), that the first long-distance electric power transmission line in the United States was completed: 14 miles between a generator at Willamette Falls and downtown Portland, Oregon.  While the distance seems trivial today, the feat was considered a major engineering accomplishment in its time.

transmission

An illustration of the Willamette power station and transmission line painted by one of its engineers

source

 

Written by LW

June 3, 2019 at 1:01 am

“‘Now I understand,’ said the last man”*…

 

G.Dyson_

All revolutions come to an end, whether they succeed or fail.

The digital revolution began when stored-program computers broke the distinction between numbers that mean things and numbers that do things. Numbers that do things now rule the world. But who rules over the machines?

Once it was simple: programmers wrote the instructions that were supplied to the machines. Since the machines were controlled by these instructions, those who wrote the instructions controlled the machines.

Two things then happened. As computers proliferated, the humans providing instructions could no longer keep up with the insatiable appetite of the machines. Codes became self-replicating, and machines began supplying instructions to other machines. Vast fortunes were made by those who had a hand in this. A small number of people and companies who helped spawn self-replicating codes became some of the richest and most powerful individuals and organizations in the world.

Then something changed. There is now more code than ever, but it is increasingly difficult to find anyone who has their hands on the wheel. Individual agency is on the wane. Most of us, most of the time, are following instructions delivered to us by computers rather than the other way around. The digital revolution has come full circle and the next revolution, an analog revolution, has begun. None dare speak its name.

Childhood’s End was Arthur C. Clarke’s masterpiece, published in 1953, chronicling the arrival of benevolent Overlords who bring many of the same conveniences now delivered by the Keepers of the Internet to Earth. It does not end well…

George Dyson explains that nations, alliances of nations, and national institutions are in decline, while a state perhaps best described as “Oligarchia” is on the ascent: the Edge New Year’s Essay, “Childhood’s End.”

(For Nick Bilton’s thoughts on the piece, see here; and for a different perspective on the same dynamics, see, e.g., Kevin Kelly’s The Inevitable.)

* Arthur C. Clarke, Childhood’s End

###

As we ponder the possibilities of posterity, we might spare a thought for Serbian-American electrical engineer and inventor Nikola Tesla; he died on this date in 1943.  Tesla is probably best remembered for his rivalry with Thomas Edison:  Tesla invented and patented the first AC motor and generator (c.f.: Niagara Falls); Edison promoted DC power… and went to great lengths to discredit Tesla and his approach.  In the end, of course, Tesla was right.

Tesla patented over 300 inventions worldwide, though he kept many of his creations out of the patent system to protect their confidentiality.  His work ranged widely, from technology critical to the development of radio to the first remote control.  At the turn of the century, Tesla designed and began planning a “worldwide wireless communications system” that was backed by J.P. Morgan…  until Morgan lost confidence and pulled out.  “Cyberspace,” as described by the likes of William Gibson and Neal Stephenson, is largely prefigured in Tesla’s plan.  On Tesla’s 75th birthday in 1931, Time put him on its cover, captioned “All the world’s his power house.”  He received congratulatory letters from Albert Einstein and more than 70 other pioneers in science and engineering.  But Tesla’s talent ran far, far ahead of his luck.  He died penniless n Room 3327 of the New Yorker Hotel.

 source

 

Written by LW

January 7, 2019 at 1:01 am

<span>%d</span> bloggers like this: