(Roughly) Daily

Posts Tagged ‘quantum mechanics

“To create something from nothing is one of the greatest feelings”*…

Something from nothing? Not exactly. As Charlie Wood explains, it’s even weirder…

For their latest magic trick, physicists have done the quantum equivalent of conjuring energy out of thin air. It’s a feat that seems to fly in the face of physical law and common sense.

“You can’t extract energy directly from the vacuum because there’s nothing there to give,” said William Unruh, a theoretical physicist at the University of British Columbia, describing the standard way of thinking.

But 15 years ago, Masahiro Hotta, a theoretical physicist at Tohoku University in Japan, proposed that perhaps the vacuum could, in fact, be coaxed into giving something up.

At first, many researchers ignored this work, suspicious that pulling energy from the vacuum was implausible, at best. Those who took a closer look, however, realized that Hotta was suggesting a subtly different quantum stunt. The energy wasn’t free; it had to be unlocked using knowledge purchased with energy in a far-off location. From this perspective, Hotta’s procedure looked less like creation and more like teleportation of energy from one place to another — a strange but less offensive idea.

“That was a real surprise,” said Unruh, who has collaborated with Hotta but has not been involved in energy teleportation research. “It’s a really neat result that he discovered.”

Now in the past year, researchers have teleported energy across microscopic distances in two separate quantum devices, vindicating Hotta’s theory. The research leaves little room for doubt that energy teleportation is a genuine quantum phenomenon.

“This really does test it,” said Seth Lloyd, a quantum physicist at the Massachusetts Institute of Technology who was not involved in the research. “You are actually teleporting. You are extracting energy.”…

Physicists Use Quantum Mechanics to Pull Energy out of Nothing,” from @walkingthedot in @QuantaMagazine.

Vaguely related (and fascinating): “The particle physics of you.”

* Prince

###

As we demolish distance, we might send insightful birthday greetings to Brain Cox; he was born on this date in 1968. A physicist and former musician (he was keyboardist for Dare and D:Ream), he is a professor of particle physics in the School of Physics and Astronomy at the University of Manchester, and a fellow at CERN (where he works on the ATLAS experiment, studying the forward proton detectors for the Large Hadron Collider there).

But Cox is most widely known as the host/presenter of science programs, perhaps especially the BBC’s Wonders of the Universe series, and for popular science books, such as Why Does E=mc²? and The Quantum Universe— which (he avers) were inspired by Carl Sagan and for which Cox has earned recognition as the natural successor to David Attenborough and Patrick Moore.

Science is too important not to be a part of a popular culture.

source

“Nothing in life is certain except death, taxes and the second law of thermodynamics”*…

The second law of thermodynamics– asserting that the entropy of a system increases with time– is among the most sacred in all of science, but it has always rested on 19th century arguments about probability. As Philip Ball reports, new thinking traces its true source to the flows of quantum information…

In all of physical law, there’s arguably no principle more sacrosanct than the second law of thermodynamics — the notion that entropy, a measure of disorder, will always stay the same or increase. “If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations — then so much the worse for Maxwell’s equations,” wrote the British astrophysicist Arthur Eddington in his 1928 book The Nature of the Physical World. “If it is found to be contradicted by observation — well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation.” No violation of this law has ever been observed, nor is any expected.

But something about the second law troubles physicists. Some are not convinced that we understand it properly or that its foundations are firm. Although it’s called a law, it’s usually regarded as merely probabilistic: It stipulates that the outcome of any process will be the most probable one (which effectively means the outcome is inevitable given the numbers involved).

Yet physicists don’t just want descriptions of what will probably happen. “We like laws of physics to be exact,” said the physicist Chiara Marletto of the University of Oxford. Can the second law be tightened up into more than just a statement of likelihoods?

A number of independent groups appear to have done just that. They may have woven the second law out of the fundamental principles of quantum mechanics — which, some suspect, have directionality and irreversibility built into them at the deepest level. According to this view, the second law comes about not because of classical probabilities but because of quantum effects such as entanglement. It arises from the ways in which quantum systems share information, and from cornerstone quantum principles that decree what is allowed to happen and what is not. In this telling, an increase in entropy is not just the most likely outcome of change. It is a logical consequence of the most fundamental resource that we know of — the quantum resource of information…

Is that most sacrosanct natural laws, second law of thermodynamics, a quantum phenomenon? “Physicists Rewrite the Fundamental Law That Leads to Disorder,” from @philipcball in @QuantaMagazine.

* “Nothing in life is certain except death, taxes and the second law of thermodynamics. All three are processes in which useful or accessible forms of some quantity, such as energy or money, are transformed into useless, inaccessible forms of the same quantity. That is not to say that these three processes don’t have fringe benefits: taxes pay for roads and schools; the second law of thermodynamics drives cars, computers and metabolism; and death, at the very least, opens up tenured faculty positions.” — Seth Lloyd

###

As we get down with disorder, we might spare a thought for Francois-Marie Arouet, better known as Voltaire; he died on this date in 1778.  The Father of the Age of Reason, he produced works in almost every literary form: plays, poems, novels, essays, and historical and scientific works– more than 2,000 books and pamphlets (and more than 20,000 letters).  He popularized Isaac Newton’s work in France by arranging a translation of Principia Mathematica to which he added his own commentary.

A social reformer, Voltaire used satire to criticize the intolerance, religious dogma, and oligopolistic privilege of his day, perhaps nowhere more sardonically than in Candide.

 source

“A nothing will serve just as well as a something about which nothing could be said”*…

Metaphysical debates in quantum physics don’t get at “truth,” physicist and mathematician Timothy Andersen argues; they’re nothing but a form of ritual activity and culture. After a thoughtful intellectual history of both quantum mechanics and Wittgenstein’s thought, he concludes…

If Wittgenstein were alive today, he might have couched his arguments in the vocabulary of cultural anthropology. For this shared grammar and these language games, in his view, form part of much larger ritualistic mechanisms that connect human activity with human knowledge, as deeply as DNA connects to human biology. It is also a perfect example of how evolution works by using pre-existing mechanisms to generate new behaviors.

The conclusion from all of this is that interpretation and representation in language and mathematics are little different than the supernatural explanations of ancient religions. Trying to resolve the debate between Bohr and Einstein is like trying to answer the Zen kōan about whether the tree falling in the forest makes a sound if no one can hear it. One cannot say definitely yes or no, because all human language must connect to human activity. And all human language and activity are ritual, signifying meaning by their interconnectedness. To ask what the wavefunction means without specifying an activity – and experiment – to extract that meaning is, therefore, as sensible as asking about the sound of the falling tree. It is nonsense.

As a scientist and mathematician, Wittgenstein has challenged my own tendency to seek out interpretations of phenomena that have no scientific value – and to see such explanations as nothing more than narratives. He taught that all that philosophy can do is remind us of what is evidently true. It’s evidently true that the wavefunction has a multiverse interpretation, but one must assume the multiverse first, since it cannot be measured. So the interpretation is a tautology, not a discovery.

I have humbled myself to the fact that we can’t justify clinging to one interpretation of reality over another. In place of my early enthusiastic Platonism, I have come to think of the world not as one filled with sharply defined truths, but rather as a place containing myriad possibilities – each of which, like the possibilities within the wavefunction itself, can be simultaneously true. Likewise, mathematics and its surrounding language don’t represent reality so much as serve as a trusty tool for helping people to navigate the world. They are of human origin and for human purposes.

To shut up and calculate, then, recognizes that there are limits to our pathways for understanding. Our only option as scientists is to look, predict and test. This might not be as glamorous an offering as the interpretations we can construct in our minds, but it is the royal road to real knowledge…

A provocative proposition: “Quantum Wittgenstein,” from @timcopia in @aeonmag.

* Ludwig Wittgenstein, Philosophical Investigations

###

As we muse on meaning, we might recall that it was on this date in 1954 that the official ground-breaking for CERN (Conseil européen pour la recherche nucléaire) was held. Located in Switzerland, it is the largest particle physics laboratory in the world… that’s to say, a prime spot to do the observation and calculation that Andersen suggests. Indeed, it’s been the site of many breakthrough discoveries over the years, maybe most notably the 2012 observation of the Higgs Boson.

Because researchers need remote access to these facilities, the lab has historically been a major wide area network hub. Indeed, it was at CERN that Tim Berners-Lee developed the first “browser”– and effectively fomented the emergence of the web.

CERN’s main site, from Switzerland looking towards France

“Information was found to be everywhere”*…

A newly-proposed experiment could confirm the fifth state of matter in the universe—and change physics as we know it…

Physicist Dr. Melvin Vopson has already published research suggesting that information has mass and that all elementary particles, the smallest known building blocks of the universe, store information about themselves, similar to the way humans have DNA.

Now, he has designed an experiment—which if proved correct—means he will have discovered that information is the fifth form of matter, alongside solid, liquid, gas and plasma…

Dr. Vopson said: “This would be a eureka moment because it would change physics as we know it and expand our understanding of the universe. But it wouldn’t conflict with any of the existing laws of physics. It doesn’t contradict quantum mechanics, electrodynamics, thermodynamics or classical mechanics. All it does is complement physics with something new and incredibly exciting.”

Dr. Vopson’s previous research suggests that information is the fundamental building block of the universe and has physical mass. He even claims that information could be the elusive dark matter that makes up almost a third of the universe…

Is information is a key element of everything in the universe? “New experiment could confirm the fifth state of matter in the universe.”

* James Gleick, The Information: A History, a Theory, a Flood

###

As we go deep, we might send thoroughly-modeled birthday greetings to Stanislaw Ulam; he was born on this date in 1909. A mathematician and nuclear physicist, he originated the Teller–Ulam design of thermonuclear weapons, discovered the concept of the cellular automaton, and suggested nuclear pulse propulsion.

But his most impactful contribution may have been his creation of the the Monte Carlo method of computation. While playing solitaire during his recovery from surgery, Ulam had thought about playing hundreds of games to estimate statistically the probability of a successful outcome. With ENIAC in mind, he realized that the availability of computers made such statistical methods very practical, and in 1949, he and Nicholas Metropolis published the first unclassified paper on the Monte Carlo method… which is now widely used in virtually every scientific field, in engineering and computer science, finance and business, and the law.

source

“I visualize a time when we will be to robots what dogs are to humans. And I am rooting for the machines.”*…

Claude Shannon with his creation, Theseus the maze-solving mouse, an early illustration of machine learning and a follow-on project to the work described below

Readers will know of your correspondent’s fascination with the remarkable Claude Shannon (see here and here), remembered as “the father of information theory,” but seminally involved in so much more. In a recent piece in IEEE Spectrum, the redoubtable Rodney Brooks argues that we should add another credit to Shannon’s list…

Among the great engineers of the 20th century, who contributed the most to our 21st-century technologies? I say: Claude Shannon.

Shannon is best known for establishing the field of information theory. In a 1948 paper, one of the greatest in the history of engineering, he came up with a way of measuring the information content of a signal and calculating the maximum rate at which information could be reliably transmitted over any sort of communication channel. The article, titled “A Mathematical Theory of Communication,” describes the basis for all modern communications, including the wireless Internet on your smartphone and even an analog voice signal on a twisted-pair telephone landline. In 1966, the IEEE gave him its highest award, the Medal of Honor, for that work.

If information theory had been Shannon’s only accomplishment, it would have been enough to secure his place in the pantheon. But he did a lot more…

In 1950 Shannon published an article in Scientific American and also a research paper describing how to program a computer to play chess. He went into detail on how to design a program for an actual computer…

Shannon did all this at a time when there were fewer than 10 computers in the world. And they were all being used for numerical calculations. He began his research paper by speculating on all sorts of things that computers might be programmed to do beyond numerical calculations, including designing relay and switching circuits, designing electronic filters for communications, translating between human languages, and making logical deductions. Computers do all these things today…

The “father of information theory” also paved the way for AI: “How Claude Shannon Helped Kick-start Machine Learning,” from @rodneyabrooks in @IEEESpectrum.

* Claude Shannon (who may or may not have been kidding…)

###

As we ponder possibility, we might send uncertain birthday greetings to Werner Karl Heisenberg; he was born on this date in 1901.  A theoretical physicist, he made important contributions to the theories of the hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, superconductivity, cosmic rays, and subatomic particles.  But he is most widely remembered as a pioneer of quantum mechanics and author of what’s become known as the Heisenberg Uncertainty Principle.  Heisenberg was awarded the Nobel Prize in Physics for 1932 “for the creation of quantum mechanics.”

During World War II, Heisenberg was part of the team attempting to create an atomic bomb for Germany– for which he was arrested and detained by the Allies at the end of the conflict.  He was returned to Germany, where he became director of the Kaiser Wilhelm Institute for Physics, which soon thereafter was renamed the Max Planck Institute for Physics. He later served as president of the German Research Council, chairman of the Commission for Atomic Physics, chairman of the Nuclear Physics Working Group, and president of the Alexander von Humboldt Foundation.

Some things are so serious that one can only joke about them

Werner Heisenberg

source

%d bloggers like this: