(Roughly) Daily

Posts Tagged ‘Isaac Newton

“Speed and acceleration are merely the dream of making time reversible”*…

In the early 20th century, there was Futurism…

The Italian Futurists, from the first half of the twentieth century… wanted to drive modernisation in turn-of-the-century Italy at a much faster pace. They saw the potential in machines, and technology, to transform the country, to demand progress. It was not however merely an incrementalist approach they were after: words like annihilation, destruction and apocalypse appear in the writings of the futurists, including the author of The Futurist Manifesto, Filippo Tomasso Marinetti. ‘We want to glorify war – the only cure for the world…’ Marinetti proclaimed – this was not for the faint hearted! That same Marinetti was the founder of the Partito Politico Futuristo in 1918, which became part of Mussolini’s Fascist party in 1919. Things did not go well after that.

Beautiful Ideas Which Kill: Accelerationism, Futurism and Bewilderment

And now, in the early 21st century, there is Accelerationism…

These [politically-motivated mass] killings were often linked to the alt-right, described as an outgrowth of the movement’s rise in the Trump era. But many of these suspected killers, from Atomwaffen thugs to the New Zealand mosque shooter to the Poway synagogue attacker, are more tightly connected to a newer and more radical white supremacist ideology, one that dismisses the alt-right as cowards unwilling to take matters into their own hands.

It’s called “accelerationism,” and it rests on the idea that Western governments are irreparably corrupt. As a result, the best thing white supremacists can do is accelerate their demise by sowing chaos and creating political tension. Accelerationist ideas have been cited in mass shooters’ manifestos — explicitly, in the case of the New Zealand killer — and are frequently referenced in white supremacist web forums and chat rooms.

Accelerationists reject any effort to seize political power through the ballot box, dismissing the alt-right’s attempts to engage in mass politics as pointless. If one votes, one should vote for the most extreme candidate, left or right, to intensify points of political and social conflict within Western societies. Their preferred tactic for heightening these contradictions, however, is not voting, but violence — attacking racial minorities and Jews as a way of bringing us closer to a race war, and using firearms to spark divisive fights over gun control. The ultimate goal is to collapse the government itself; they hope for a white-dominated future after that…

Accelerationism: the obscure idea inspiring white supremacist killers around the world” (and source of the image above)

See also: “A Year After January 6, Is Accelerationism the New Terrorist Threat?

For a look at the “intellectual” roots of accelerationism, see “Accelerationism: how a fringe philosophy predicted the future we live in.”

For a powerful articulation of the dangers of Futurism (and even more, Acclerationism), see “The Perils of Smashing the Past.”

And for a reminder of the not-so-obvious ways that movements like these live on, see “The Intentionally Scandalous 1932 Cookbook That Stands the Test of Time,” on The Futurist Cookbook, by Futurist Manifesto author Filippo Tommaso Marinetti… which foreshadowed the “food as fuel” culinary movements that we see today.

* Jean Baudrillard


As we slow down, we might send a “Alles Gute zum Geburtstag” to the polymathic Gottfried Wilhelm Leibniz, the philosopher, mathematician, and political adviser, who was important both as a metaphysician and as a logician, but who is probably best remembered for his independent invention of the calculus; he was born on this date in 1646.  Leibniz discovered and developed differential and integral calculus on his own, which he published in 1684; but he became involved in a bitter priority dispute with Isaac Newton, whose ideas on the calculus were developed earlier (1665), but published later (1687).

As it happens, Leibnitz was a wry and incisive political and cultural observer.  Consider, e.g…

If geometry conflicted with our passions and our present concerns as much as morality does, we would dispute it and transgress it almost as much–in spite of all Euclid’s and Archimedes’ demonstrations, which would be treated as fantasies and deemed to be full of fallacies. [Leibniz, New Essays, p. 95]



“Nothing in life is certain except death, taxes and the second law of thermodynamics”*…

The second law of thermodynamics– asserting that the entropy of a system increases with time– is among the most sacred in all of science, but it has always rested on 19th century arguments about probability. As Philip Ball reports, new thinking traces its true source to the flows of quantum information…

In all of physical law, there’s arguably no principle more sacrosanct than the second law of thermodynamics — the notion that entropy, a measure of disorder, will always stay the same or increase. “If someone points out to you that your pet theory of the universe is in disagreement with Maxwell’s equations — then so much the worse for Maxwell’s equations,” wrote the British astrophysicist Arthur Eddington in his 1928 book The Nature of the Physical World. “If it is found to be contradicted by observation — well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation.” No violation of this law has ever been observed, nor is any expected.

But something about the second law troubles physicists. Some are not convinced that we understand it properly or that its foundations are firm. Although it’s called a law, it’s usually regarded as merely probabilistic: It stipulates that the outcome of any process will be the most probable one (which effectively means the outcome is inevitable given the numbers involved).

Yet physicists don’t just want descriptions of what will probably happen. “We like laws of physics to be exact,” said the physicist Chiara Marletto of the University of Oxford. Can the second law be tightened up into more than just a statement of likelihoods?

A number of independent groups appear to have done just that. They may have woven the second law out of the fundamental principles of quantum mechanics — which, some suspect, have directionality and irreversibility built into them at the deepest level. According to this view, the second law comes about not because of classical probabilities but because of quantum effects such as entanglement. It arises from the ways in which quantum systems share information, and from cornerstone quantum principles that decree what is allowed to happen and what is not. In this telling, an increase in entropy is not just the most likely outcome of change. It is a logical consequence of the most fundamental resource that we know of — the quantum resource of information…

Is that most sacrosanct natural laws, second law of thermodynamics, a quantum phenomenon? “Physicists Rewrite the Fundamental Law That Leads to Disorder,” from @philipcball in @QuantaMagazine.

* “Nothing in life is certain except death, taxes and the second law of thermodynamics. All three are processes in which useful or accessible forms of some quantity, such as energy or money, are transformed into useless, inaccessible forms of the same quantity. That is not to say that these three processes don’t have fringe benefits: taxes pay for roads and schools; the second law of thermodynamics drives cars, computers and metabolism; and death, at the very least, opens up tenured faculty positions.” — Seth Lloyd


As we get down with disorder, we might spare a thought for Francois-Marie Arouet, better known as Voltaire; he died on this date in 1778.  The Father of the Age of Reason, he produced works in almost every literary form: plays, poems, novels, essays, and historical and scientific works– more than 2,000 books and pamphlets (and more than 20,000 letters).  He popularized Isaac Newton’s work in France by arranging a translation of Principia Mathematica to which he added his own commentary.

A social reformer, Voltaire used satire to criticize the intolerance, religious dogma, and oligopolistic privilege of his day, perhaps nowhere more sardonically than in Candide.


“A man will turn over half a library to make one book.”*…

Source: Takram

Continuing yesterday’s focus on books…

Marioka Shoten is a bookstore that sells only one book at a time (but sells multiple copies of it) for a week. The bookseller Yoshiyuki Morioka carefully selects a title from novels, manga, biographies and graphic novels for showcasing every week. With the extreme approach to curation, the bookstore is a blend of a shop, a gallery and a meeting place with an essence of minimalism…

From Rishikesh Sreehari (@rishikeshshari), “Single Room with a Single Book,” in his fascinating newsletter 10 + 1 Things.

See also, “Japanese bookshop stocks only one book at a time,” in @guardian.

* Samuel Johnson


As we contemplate curation, we might send rational birthday greetings to Francois-Marie Arouet, better known as Voltaire; he was born on this date in 1694.  The Father of the Age of Reason, he produced works in almost every literary form: plays, poems, novels, essays, and historical and scientific works– more than 2,000 books and pamphlets (and more than 20,000 letters).  He popularized Isaac Newton’s work in France by arranging a translation of Principia Mathematica to which he added his own commentary.

A social reformer, Voltaire used satire to criticize the intolerance, religious dogma, and oligopolistic privilege of his day, perhaps nowhere more sardonically than in Candide.


“Man tends to define in terms of the familiar. But the fundamental truths may not be familiar.”*…

Most of us probably do not need to think too hard to distinguish living things from the “non-living”. A human is alive; a rock is not. Easy!

Scientists and philosophers do not see things quite this clearly. They have spent millennia pondering what it is that makes something alive. Great minds from Aristotle to Carl Sagan have given it some thought – and they still have not come up with a definition that pleases everyone. In a very literal sense, we do not yet have a “meaning” for life.

If anything, the problem of defining life has become even more difficult over the last 100 years or so. Until the 19th Century one prevalent idea was that life is special thanks to the presence of an intangible soul or “vital spark”. This idea has now fallen out of favour in scientific circles. It has since been superseded by more scientific approaches. Nasa, for instance, has described life as “a self-sustaining chemical system capable of Darwinian evolution”.

But Nasa’s is just one of many attempts to pin down all life with a simple description. In fact, over 100 definitions of life have been proposed, with most focusing on a handful of key attributes such as replication and metabolism.

To make matters worse, different kinds of scientist have different ideas about what is truly necessary to define something as alive. While a chemist might say life boils down to certain molecules, a physicist might want to discuss thermodynamics…

A comparative survey of the definitions that currently exist concludes…

To properly define life, we might need to find some aliens.

The irony is that attempts to pin down a definition of life before we discover those aliens might actually make them more difficult to find. What a tragedy it would be if in the 2020s the new Mars rover trundles straight past a Martian, simply because it does not recognise it as being alive.

“The definition can actually hinder the search for novel life,” says [Carol] Cleland. “We need to get away from our current concept, so that we are open to discovering life as we don’t know it.”

It is surprisingly difficult to pin down the difference between living and non-living things: “There are over 100 definitions of ‘life’ and all are wrong.

* Carl Sagan


As we strive for beginner’s mind, we might send exploratory birthday greetings to John Theophilus Desaguliers; he was born on this date in 1683. A natural philosopher, clergyman, and engineer, he is best remembered as the experimental assistant to Isaac Newton, who went on to popularize Newton’s work in public lectures and publications. On the strength of that work, Desaguliers was elected to the Royal Society and ultimately became its curator.

In his own work he coined the terms conductor and insulator. He repeated and extended the work of Stephen Gray in electricity. He proposed a scheme for heating vessels such as salt-boilers by steam instead of fire. And he made inventions of his own (e.g., a planetarium), and material improvements to others’ machines, such as Thomas Savery’s steam engine (by adding a safety valve and using an internal water jet to condense the steam in the displacement chambers) and a ventilator at the House of Commons. 


Written by (Roughly) Daily

March 12, 2021 at 1:01 am

“In the space between chaos and shape there was another chance”*…

Prince Hamlet spent a lot of time pondering the nature of chance and probability in William Shakespeare’s tragedy. In the famous “To be or not to be” speech, he notes that we helplessly face “the slings and arrows of outrageous fortune” — though a little earlier in the play he declares that “there’s a special providence in the fall of a sparrow,” suggesting that everything happens because God wills it to be so.

We can hardly fault the prince for holding two seemingly contradictory views about the nature of chance; after all, it is a puzzle that has vexed humankind through the ages. Why are we here? Or to give the question a slightly more modern spin, what sequence of events brought us here, and can we imagine a world in which we didn’t arrive on the scene at all?

It is to biologist Sean B. Carroll’s credit that he’s found a way of taking a puzzle that could easily fill volumes (and probably has filled volumes), and presenting it to us in a slim, non-technical, and fun little book, “A Series of Fortunate Events: Chance and the Making of the Planet, Life, and You.”

Carroll (not to be confused with physicist and writer Sean M. Carroll) gets the ball rolling with an introduction to the key concepts in probability and game theory, but quickly moves on to the issue at the heart of the book: the role of chance in evolution. Here we meet a key historical figure, the 20th-century French biochemist Jacques Monod, who won a Nobel Prize for his work on genetics. Monod understood that genetic mutations play a critical role in evolution, and he was struck by the random nature of those mutations…

Carroll quotes Monod: “Pure chance, absolutely free and blind, at the very root of the stupendous edifice of evolution: This central concept of modern biology is no longer one among other possible or even conceivable hypotheses. It is today the sole conceivable hypothesis, the only one that squares with observed and tested fact.”

“There is no scientific concept, in any of the sciences,” Monod concludes, “more destructive of anthropocentrism than this one.”

From there, it’s a short step to the realization that we humans might never have evolved in the first place…

Preview(opens in a new tab)

The profound impact of randomness in determining destiny: “The Power of Chance in Shaping Life and Evolution.”

See also: “Survival of the Luckiest.”

* Jeanette Winterson, The World and Other Places


As we blow on the dice, we might send carefully-calculated birthday greetings to Gabrielle-Émilie Le Tonnelier de Breteuil, Marquise du Châtelet, the French mathematician and physicist who is probably (if unfairly) better known as Voltaire’s mistress; she was born on this date in 1706.  Fascinated by the work of Newton and Leibniz, she dressed as a man to frequent the cafes where the scientific discussions of the time were held.  Her major work was a translation of Newton’s Principia, for which Voltaire wrote the preface; it was published a decade after her death, and was for many years the only translation of the Principia into French.

Judge me for my own merits, or lack of them, but do not look upon me as a mere appendage to this great general or that great scholar, this star that shines at the court of France or that famed author. I am in my own right a whole person, responsible to myself alone for all that I am, all that I say, all that I do. It may be that there are metaphysicians and philosophers whose learning is greater than mine, although I have not met them. Yet, they are but frail humans, too, and have their faults; so, when I add the sum total of my graces, I confess I am inferior to no one.
– Mme du Châtelet, to Frederick the Great of Prussia


%d bloggers like this: