(Roughly) Daily

Posts Tagged ‘history of science

“I’m sure the universe is full of intelligent life. It’s just been too intelligent to come here.”*…

Email migration should now be complete; email subscribers should now be getting (Roughly) Daily via Mailchimp, and should not be getting a duplicate from Feedburner. If you are getting a dupe, please let me know (roughlydaily@gmail.com). Note that this new service may be landing in your Gmail “Promotions” folder; you can move it to your main folder. With apologies for the turbulence over the last few days, and thanks for your continued reading, on to today’s post…

A new computer simulation shows that a technologically advanced civilization, even when using slow ships, can still colonize an entire galaxy in a modest amount of time. The finding presents a possible model for interstellar migration and a sharpened sense of where we might find alien intelligence.

Space, we are told time and time again, is huge, and that’s why we have yet to see signs of extraterrestrial intelligence. For sure, the distances between stars are vast, but it’s important to remember that the universe is also very, very old. In fact, I’d go so far as to say that, in terms of extremes, the Milky Way galaxy is more ancient than it is huge, if that makes sense. It’s for this reason that I tend to dismiss distances as a significant variable when discussing the Fermi Paradox—the observation that we have yet to see any evidence for the existence of alien intelligence, even though we probably should have.

New research published in The American Astronomical Society is bolstering my conviction. The new paper, co-authored by Jason Wright, an astronomer and astrophysicist at Penn State, and Caleb Scharf, an astrobiologist at Columbia University, shows that even the most conservative estimates of civilizational expansion can still result in a galactic empire.

A simulation produced by the team shows the process at work, as a lone technological civilization, living in a hypothetical Milky Way-like galaxy, begins the process of galactic expansion… Things start off slow in the simulation, but the civilization’s rate of spread really picks up once the power of exponential growth kicks in. But that’s only part of the story; the expansion rate is heavily influenced by the increased density of stars near the galactic center and a patient policy, in which the settlers wait for the stars to come to them, a result of the galaxy spinning on its axis.

The whole process, in which the entire inner galaxy is settled, takes one billion years. That sounds like a long time, but it’s only somewhere between 7% and 9% the total age of the Milky Way galaxy.

As noted, the new model is constrained by some very conservative rules. Migration ships are launched once every 10,000 years, and no civilization can last longer than 100 million years. Ships can travel no farther than 10 light-years and at speeds no faster than 6.2 miles per second (10 kilometers per second), which is comparable to human probes like the Voyager and New Horizons spacecraft. 

“This means we’re not talking about a rapidly or aggressively expanding species, and there’s no warp drive or anything,” said Wright. “There’s just ships that do things we could actually manage to do with something like technology we can design today… Even under these conditions, the entire inner part of the simulated galaxy became settled in a billion years. But as Wright reminded me, our “galaxy is over 10 billion years old, so it could have happened many times over, even with those parameters.”…

A new simulation published by the American Astronomical Society suggests that aliens wouldn’t need warp drives to take over an entire galaxy in (relatively) short order, as George Dvorsky (@dvorsky) explains.

[Image above: Andromeda Galaxy, source]

* Arthur C. Clarke

###

As we spread out, we might spare a thought for Jacobus Cornelius Kapteyn; he died on this date in 1922. An astronomer, he used photography and statistical methods to determine the motions and spatial distribution of stars (especially with the Milky Way), the first major step after the works of William and John Herschel. He introduced absolute magnitude and color indexing as standard concepts in cataloguing stars.

Kapteyn was also among the first to suggest the existence of dark matter (which he deduced from examining stellar velocities).

source

“Several thousand years from now, nothing about you as an individual will matter. But what you did will have huge consequences.”*…

In 2013, a philosopher and ecologist named Timothy Morton proposed that humanity had entered a new phase. What had changed was our relationship to the nonhuman. For the first time, Morton wrote, we had become aware that “nonhuman beings” were “responsible for the next moment of human history and thinking.” The nonhuman beings Morton had in mind weren’t computers or space aliens but a particular group of objects that were “massively distributed in time and space.” Morton called them “hyperobjects”: all the nuclear material on earth, for example, or all the plastic in the sea. “Everyone must reckon with the power of rising waves and ultraviolet light,” Morton wrote, in “Hyperobjects: Philosophy and Ecology After the End of the World.” Those rising waves were being created by a hyperobject: all the carbon in the atmosphere.

Hyperobjects are real, they exist in our world, but they are also beyond us. We know a piece of Styrofoam when we see it—it’s white, spongy, light as air—and yet fourteen million tons of Styrofoam are produced every year; chunks of it break down into particles that enter other objects, including animals. Although Styrofoam is everywhere, one can never point to all the Styrofoam in the world and say, “There it is.” Ultimately, Morton writes, whatever bit of Styrofoam you may be interacting with at any particular moment is only a “local manifestation” of a larger whole that exists in other places and will exist on this planet millennia after you are dead. Relative to human beings, therefore, Styrofoam is “hyper” in terms of both space and time. It’s not implausible to say that our planet is a place for Styrofoam more than it is a place for people.

When “Hyperobjects” was published, philosophers largely ignored it. But Morton, who uses the pronouns “they” and “them,” quickly found a following among artists, science-fiction writers, pop stars, and high-school students. The international curator and art-world impresario Hans Ulrich Obrist began citing Morton’s ideas; Morton collaborated on a talk with Laurie Anderson and helped inspire “Reality Machines,” an installation by the Icelandic-Danish artist Olafur Eliasson. Kim Stanley Robinson and Jeff VanderMeer—prominent sci-fi writers who also deal with ecological themes—have engaged with Morton’s work; Björk blurbed Morton’s book “Being Ecological,” writing, “I have been reading Tim Morton’s books for a while and I like them a lot.”

The problem with hyperobjects is that you cannot experience one, not completely. You also can’t not experience one. They bump into you, or you bump into them; they bug you, but they are also so massive and complex that you can never fully comprehend what’s bugging you. This oscillation between experiencing and not experiencing cannot be resolved. It’s just the way hyperobjects are.

Take oil: nature at its most elemental; black ooze from the depths of the earth. And yet oil is also the stuff of cars, plastic, the Industrial Revolution; it collapses any distinction between nature and not-nature. Driving to the port, we were surrounded by oil and its byproducts—the ooze itself, and the infrastructure that transports it, refines it, holds it, and consumes it—and yet, Morton said, we could never really see the hyperobject of capital-“O” Oil: it shapes our lives but is too big to see.

Since around 2010, Morton has become associated with a philosophical movement known as object-oriented ontology, or O.O.O. The point of O.O.O. is that there is a vast cosmos out there in which weird and interesting shit is happening to all sorts of objects, all the time. In a 1999 lecture, “Object-Oriented Philosophy,” Graham Harman, the movement’s central figure, explained the core idea:

The arena of the world is packed with diverse objects, their forces unleashed and mostly unloved. Red billiard ball smacks green billiard ball. Snowflakes glitter in the light that cruelly annihilates them, while damaged submarines rust along the ocean floor. As flour emerges from mills and blocks of limestone are compressed by earthquakes, gigantic mushrooms spread in the Michigan forest. While human philosophers bludgeon each other over the very possibility of “access” to the world, sharks bludgeon tuna fish and icebergs smash into coastlines…

We are not, as many of the most influential twentieth-century philosophers would have it, trapped within language or mind or culture or anything else. Reality is real, and right there to experience—but it also escapes complete knowability. One must confront reality with the full realization that you’ll always be missing something in the confrontation. Objects are always revealing something, and always concealing something, simply because they are Other. The ethics implied by such a strangely strange world hold that every single object everywhere is real in its own way. This realness cannot be avoided or backed away from. There is no “outside”—just the entire universe of entities constantly interacting, and you are one of them.

… “[Covid-19 is] the ultimate hyperobject,” Morton said. “The hyperobject of our age. It’s literally inside us.” We talked for a bit about fear of the virus—Morton has asthma, and suffers from sleep apnea. “I feel bad for subtitling the hyperobjects book ‘Philosophy and Ecology After the End of the World,’ ” Morton said. “That idea scares people. I don’t mean ‘end of the world’ the way they think I mean it. But why do that to people? Why scare them?”

What Morton means by “the end of the world” is that a world view is passing away. The passing of this world view means that there is no “world” anymore. There’s just an infinite expanse of objects, which have as much power to determine us as we have to determine them. Part of the work of confronting strange strangeness is therefore grappling with fear, sadness, powerlessness, grief, despair. “Somewhere, a bird is singing and clouds pass overhead,” Morton writes, in “Being Ecological,” from 2018. “You stop reading this book and look around you. You don’t have to be ecological. Because you are ecological.” It’s a winsome and terrifying idea. Learning to see oneself as an object among objects is destabilizing—like learning “to navigate through a bad dream.” In many ways, Morton’s project is not philosophical but therapeutic. They have been trying to prepare themselves for the seismic shifts that are coming as the world we thought we knew transforms.

For the philosopher of “hyperobjects”—vast, unknowable things that are bigger than ourselves—the coronavirus is further proof that we live in a dark ecology: “Timothy Morton’s Hyper-Pandemic.”

* “Several thousand years from now, nothing about you as an individual will matter. But what you did will have huge consequences. This is the paradox of the ecological age. And it is why action to change global warming must be massive and collective.” – Timothy Morton, Being Ecological

###

As we find our place, we might send classical birthday greetings to James Clerk Maxwell; he was born on this date in 1831.  A mathematician and and physicist, he calculated (circa 1862) that the speed of propagation of an electromagnetic field is approximately that of the speed of light– kicking off his work in uniting electricity, magnetism, and light… that’s to say, formulating the classical theory of electromagnetic radiation, which is considered the “second great unification in physics” (after the first, realized by Isaac Newton). Though he was the apotheosis of classical (Newtonian) physics, Maxwell laid the foundation for modern physics, starting the search for radio waves and paving the way for such fields as special relativity and quantum mechanics.  In the Millennium Poll – a survey of the 100 most prominent physicists at the turn of the 21st century – Maxwell was voted the third greatest physicist of all time, behind only Newton and Einstein.

225px-James_Clerk_Maxwell

 source

“There are some secrets which do not permit themselves to be told”*…

… and some that do:

Edgar A. Poe landed in Philadelphia in 1838. He had been raised among the elite of Richmond, Virginia, but in Philadelphia he was an impoverished outsider seeking recognition and stability as a professional writer. Strikingly, Poe’s first publication in Philadelphia—and the one that sold the most in his lifetime—was a scientific textbook…

Poe’s best-selling book during his lifetime was a guide to seashells, and The Conchologist’s First Book was good enough to elevate the entire field: the fascinating story in this excerpt from John Tresch’s The Reason for the Darkness of the Night: Edgar Allan Poe and the Forging of American Science (available June 15).

* Edgar Allan Poe

###

As we comb the beach, we might recall that it was on this date in 1933 that motorists lined up for the opening of America’s first drive-in theater, in Camden, NJ.

Park-In Theaters–the term “drive-in” came to be widely used only later–was the brainchild of Richard Hollingshead, a movie fan and a sales manager at his father’s company, Whiz Auto Products, in Camden. Reportedly inspired by his mother’s struggle to sit comfortably in traditional movie theater seats, Hollingshead came up with the idea of an open-air theater where patrons watched movies in the comfort of their own automobiles. He then experimented in the driveway of his own house with different projection and sound techniques, mounting a 1928 Kodak projector on the hood of his car, pinning a screen to some trees, and placing a radio behind the screen for sound. He also tested ways to guard against rain and other inclement weather, and devised the ideal spacing arrangement for a number of cars so that all would have a view of the screen. [The first feature was a 1932 film, Wives Beware]

The young entrepreneur received a patent for the concept in May of 1933 and opened Park-In Theaters, Inc. less than a month later, with an initial investment of $30,000. Advertising it as entertainment for the whole family, Hollingshead charged 25 cents per car and 25 cents per person, with no group paying more than one dollar…

source

[For a more contemporary photographic update on the phenomenon, see here.]

source

“What I should have been, you see, is a neurologist”*…

Franz Anton Mesmer; drawing by David Levine

It was in a mood of irritable skepticism that the Scottish surgeon James Braid attended a public demonstration of Animal Magnetism—in which people were said to fall into trances—on the night of November 13, 1841. From everything he had read and heard about the trances that occurred at the bidding of the operator—the person who induced the trances—he reports that he was “fully inclined to join with those who considered the whole thing to be a system of collusion and delusion, or an excited imagination, sympathy, or imitation.” After observing the demonstration, he considered that the trances were quite genuine, but at the same time he felt satisfied “that they were not dependent on any special agency or emanation passing from the body of the operator to that of the patient as animal magnetizers allege.” He returned to the demonstration when it was repeated by popular demand a week later, and on this occasion he felt that he had identified the cause of these mysteriously punctual onsets of “nervous sleep.” He was to devote the last eighteen years of his life to the topic, and under the proprietary title of Hypnotism he explained and redescribed the process in terms which would have been unrecognizable to its eighteenth-century discoverer, Franz Anton Mesmer…

With its intriguing combination of occult powers, clairvoyant trances, and invisible weightless fluids, animal magnetism seemed to guarantee the existence of a reality beyond the world of the senses, and many people saw it as an irresistible alternative to an increasingly mechanized picture of the universe.

The remarkable Jonathan Miller— remembered as a partner of Peter Cook, Dudley Moore, and Allan Bennett in Beyond the Fringe and for his later career as a distinguished stage and opera director, but trained as a doctor– explains how Mesmer’s “animal magnetism” was wrangled by doctors and scientists into “hypnotism,” and how it birthed an understanding of the Unconscious that pre-dates Freud… and that’s undergoing a renaissance, as it’s proving more useful than the psychoanalytic version that obscured it for a century: “Going Unconscious” (an unlocked essay from The New York Review of Books archive).

* Jonathan Miller

###

As we go deep, we might send polymathic birthday greetings to William Whewell; he was born on this date in 1794. A scientist, Anglican priest, philosopher, theologian, and historian of science, he was Master of Trinity College, Cambridge.

At a time when specialization was increasing, Whewell was renown for the breadth of his work: he published the disciplines of mechanics, physics, geology, astronomy, and economics, while also finding the time to compose poetry, author a Bridgewater Treatise, translate the works of Goethe, and write sermons and theological tracts. In mathematics, Whewell introduced what is now called the Whewell equation, defining the shape of a curve without reference to an arbitrarily chosen coordinate system. He founded mathematical crystallography and developed a revision of  Friedrich Mohs’s classification of minerals. And he organized thousands of volunteers internationally to study ocean tides, in what is now considered one of the first citizen science projects.

But some argue that Whewell’s greatest gift to science was his wordsmithing: He created the words scientist and physicist by analogy with the word artist; they soon replaced the older term natural philosopher. He also named linguisticsconsiliencecatastrophismuniformitarianism, and astigmatism.

Other useful words were coined to help his friends: biometry for John Lubbock; Eocine, Miocene and Pliocene for Charles Lyell; and for Michael Faraday, electrode, anode, cathode, diamagnetic, paramagnetic, and ion (whence the sundry other particle names ending -ion).

source

“I like it when a flower or a little tuft of grass grows through a crack in the concrete. It’s so f#@kin’ heroic.”*…

From dilapidated power plants, abandoned medical facilities, and amusement parks left in rusted ruin, the compelling scenes that French photographer Jonathan Jimenez, aka Jonk (previously), captures are evidence of nature’s endurance and power to reclaim spaces transformed by people. Now compiled in a new book titled Naturalia II, 221 images shot across 17 countries frame the thriving vegetation that crawls across chipped concrete and architecture in unruly masses.

This succeeding volume is a follow-up to Jonk’s first book by the same name and focuses on the ways the ecological crisis has evolved during the last three years. He explains the impetus for the book in a statement:

On the one hand, the situation has deteriorated even further with yet another species becoming extinct every single day. Global warming continues and has caused repeated natural catastrophes: floods, fires, droughts, etc. On the other hand, our collective awareness has widely increased. We are still a long way from the commitment needed to really change things, but we are heading in the right direction. Millions of initiatives have already emerged, and I hope that my photos and the message contained within them can play a small part in the collective challenge facing us all…

More at “Nature Resurges to Overtake Abandoned Architecture in a New Book of Photos by Jonk” and at his site.

On an apposite note: “Forest the size of France regrown worldwide over 20 years, study finds.”

* George Carlin

###

As we inspect the inexorable, we might spare a thought for Hugo Marie de Vries; he died on this date in 1935. A botanist, he introduced the experimental study of organic evolution– and was, thus, was one of the first geneticists. His rediscovery in 1900 (simultaneously with the botanists Carl Correns and Erich Tschermak von Seysenegg) of Gregor Mendel’s principles of heredity and his theory of biological mutation, though considerably different from a modern understanding of the phenomenon, resolved ambiguous concepts concerning the nature of variation of species that, until then, had precluded the universal acceptance and active investigation of Charles Darwin’s system of organic evolution.

He suggested the concept of genes and introduced the term “mutation”, and developed a mutation theory of evolution.

source

%d bloggers like this: