(Roughly) Daily

Posts Tagged ‘scientific communications

“The pursuit of science is a grand adventure, driven by curiosity, fueled by passion, and guided by reason”*…

Adam Mastroianni on how science advances (and how it’s held back), with a provocative set of suggestions for how it might be accelerated…

There are two kinds of problems in the world: strong-link problems and weak-link problems.

Weak-link problems are problems where the overall quality depends on how good the worst stuff is. You fix weak-link problems by making the weakest links stronger, or by eliminating them entirely.

Food safety, for example, is a weak-link problem. You don’t want to eat anything that will kill you. That’s why it makes sense for the Food and Drug Administration to inspect processing plants, to set standards, and to ban dangerous foods…

Weak-link problems are everywhere. A car engine is a weak-link problem: it doesn’t matter how great your spark plugs are if your transmission is busted. Nuclear proliferation is a weak-link problem: it would be great if, say, France locked up their nukes even tighter, but the real danger is some rogue nation blowing up the world. Putting on too-tight pants is a weak-link problem: they’re gonna split at the seams.

It’s easy to assume that all problems are like this, but they’re not. Some problems are strong-link problems: overall quality depends on how good the best stuff is, and the bad stuff barely matters. Like music, for instance. You listen to the stuff you like the most and ignore the rest. When your favorite band releases a new album, you go “yippee!” When a band you’ve never heard of and wouldn’t like anyway releases a new album, you go…nothing at all, you don’t even know it’s happened. At worst, bad music makes it a little harder for you to find good music, or it annoys you by being played on the radio in the grocery store while you’re trying to buy your beetle-free asparagus…

Strong-link problems are everywhere; they’re just harder to spot. Winning the Olympics is a strong-link problem: all that matters is how good your country’s best athletes are. Friendships are a strong-link problem: you wouldn’t trade your ride-or-dies for better acquaintances. Venture capital is a strong-link problem: it’s fine to invest in a bunch of startups that go bust as long as one of them goes to a billion…

In the long run, the best stuff is basically all that matters, and the bad stuff doesn’t matter at all. The history of science is littered with the skulls of dead theories. No more phlogiston nor phlegm, no more luminiferous ether, no more geocentrism, no more measuring someone’s character by the bumps on their head, no more barnacles magically turning into geese, no more invisible rays shooting out of people’s eyes, no more plum pudding

Our current scientific beliefs are not a random mix of the dumbest and smartest ideas from all of human history, and that’s because the smarter ideas stuck around while the dumber ones kind of went nowhere, on average—the hallmark of a strong-link problem. That doesn’t mean better ideas win immediately. Worse ideas can soak up resources and waste our time, and frauds can mislead us temporarily. It can take longer than a human lifetime to figure out which ideas are better, and sometimes progress only happens when old scientists die. But when a theory does a better job of explaining the world, it tends to stick around.

(Science being a strong-link problem doesn’t mean that science is currently strong. I think we’re still living in the Dark Ages, just less dark than before.)

Here’s the crazy thing: most people treat science like it’s a weak-link problem.

Peer reviewing publications and grant proposals, for example, is a massive weak-link intervention. We spend ~15,000 collective years of effort every year trying to prevent bad research from being published. We force scientists to spend huge chunks of time filling out grant applications—most of which will be unsuccessful—because we want to make sure we aren’t wasting our money…

I think there are two reasons why scientists act like science is a weak-link problem.

The first reason is fear. Competition for academic jobs, grants, and space in prestigious journals is more cutthroat than ever. When a single member of a grant panel, hiring committee, or editorial board can tank your career, you better stick to low-risk ideas. That’s fine when we’re trying to keep beetles out of asparagus, but it’s not fine when we’re trying to discover fundamental truths about the world…

The second reason is status. I’ve talked to a lot of folks since I published The rise and fall of peer review and got a lot of comments, and I’ve realized that when scientists tell me, “We need to prevent bad research from being published!” they often mean, “We need to prevent people from gaining academic status that they don’t deserve!” That is, to them, the problem with bad research isn’t really that it distorts the scientific record. The problem with bad research is that it’s cheating

I get that. It’s maddening to watch someone get ahead using shady tactics, and it might seem like the solution is to tighten the rules so we catch more of the cheaters. But that’s weak-link thinking. The real solution is to care less about the hierarchy

Here’s our reward for a generation of weak-link thinking.

The US government spends ~10x more on science today than it did in 1956, adjusted for inflation. We’ve got loads more scientists, and they publish way more papers. And yet science is less disruptive than ever, scientific productivity has been falling for decades, and scientists rate the discoveries of decades ago as worthier than the discoveries of today. (Reminder, if you want to blame this on ideas getting harder to find, I will fight you.)…

Whether we realize it or not, we’re always making calls like this. Whenever we demand certificates, credentials, inspections, professionalism, standards, and regulations, we are saying: “this is a weak-link problem; we must prevent the bad!”

Whenever we demand laissez-faire, the cutting of red tape, the letting of a thousand flowers bloom, we are saying: “this is a strong-link problem; we must promote the good!”

When we get this right, we fill the world with good things and rid the world of bad things. When we don’t, we end up stunting science for a generation. Or we end up eating a lot of asparagus beetles…

Science is a strong-link problem,” from @a_m_mastroianni in @science_seeds.

* James Clerk Maxwell

###

As we ponder the process of progress, we might spare a thought for Sir Christopher Wren; he died on this date in 1723.  A mathematician and astronomer (who co-founded and later served as president of the Royal Society), he is better remembered as one of the most highly acclaimed English architects in history; he was given responsibility for rebuilding 52 churches in the City of London after the Great Fire in 1666, including what is regarded as his masterpiece, St. Paul’s Cathedral, on Ludgate Hill.

Wren, whose scientific work ranged broadly– e.g., he invented a “weather clock” similar to a modern barometer, new engraving methods, and helped develop a blood transfusion technique– was admired by Isaac Newton, as Newton noted in the Principia.

 source

“I have always imagined that Paradise will be a kind of a Library”*…

Digitization promised to democratize learning, and despite countervailing forces the trend is toward more open access. But is an ‘Alexandria in the cloud’ really an open sesame? The redoubtable Robert Darnton reviews the equally-estimable Peter Baldwin‘s important new book, Athena Unbound- Why and How Scholarly Knowledge Should Be Free for All

In 1991 the World Wide Web seemed to provide a path to a dazzling future: everyone in the world would be able to communicate, at a minimal cost, with everyone else through the Internet. In 2004 Google promised to make that future even brighter. By digitizing library holdings, Google would create a modern Library of Alexandria: everyone would have free access to all the books in existence. Digitization promised to open up the world of learning to the excluded and the underprivileged, particularly in developing countries. But it touched off an equal and opposite reaction in the form of closed access, paywalls, and monopolies. The world of learning has become a battleground between the opposed forces of democratization and commercialization…

Darnton, who shares Baldwin’s goals of preservation and open access, unpacks the history of digital sharing/lending and of the forces massed to oppose it, and reviews the risks that attach, concluding in the end on a less optimistic (or at least, more complicated) note than Baldwin– a “dialogue” that’s enormously informative.

The Dream of a Universal Library” (possible paywall; archived link here), from @RobertDarnton.

* Jorge Luis Borges

###

As we accelerate access, we might send exquisitely-curated birthday greetings to Belle da Costa Greene; she was born on this date in 1879. A librarian, she managed and developed the personal library of J. P. Morgan. After Morgan’s death in 1913, Greene continued as librarian for his son, Jack Morgan, and in 1924 was named the first director of the Pierpont Morgan Library.

Her life was a sad comment on access of another sort. Born to Black parents (her father, Richard Theodore Greener, was the first black student and first black graduate of Harvard [class of 1870], who ultimately served as dean of the Howard University School of Law), Greene passed for white. After she took the job with Morgan, she likely never spoke to her father again and listed him as deceased on passport applications throughout the 1910s, despite his being alive until 1922.

source

“With my tongue in one cheek only, I’d suggest that had our palaeolithic ancestors discovered the peer-review dredger, we would be still sitting in caves”*…

As a format, “scholarly” scientific communications are slow, encourage hype, and are difficult to correct. Stuart Ritchie argues that a radical overhaul of publishing could make science better…

… Having been printed on paper since the very first scientific journal was inaugurated in 1665, the overwhelming majority of research is now submitted, reviewed and read online. During the pandemic, it was often devoured on social media, an essential part of the unfolding story of Covid-19. Hard copies of journals are increasingly viewed as curiosities – or not viewed at all.

But although the internet has transformed the way we read it, the overall system for how we publish science remains largely unchanged. We still have scientific papers; we still send them off to peer reviewers; we still have editors who give the ultimate thumbs up or down as to whether a paper is published in their journal.

This system comes with big problems. Chief among them is the issue of publication bias: reviewers and editors are more likely to give a scientific paper a good write-up and publish it in their journal if it reports positive or exciting results. So scientists go to great lengths to hype up their studies, lean on their analyses so they produce “better” results, and sometimes even commit fraud in order to impress those all-important gatekeepers. This drastically distorts our view of what really went on.

There are some possible fixes that change the way journals work. Maybe the decision to publish could be made based only on the methodology of a study, rather than on its results (this is already happening to a modest extent in a few journals). Maybe scientists could just publish all their research by default, and journals would curate, rather than decide, which results get out into the world. But maybe we could go a step further, and get rid of scientific papers altogether…

A bold proposal: “The big idea: should we get rid of the scientific paper?,” from @StuartJRitchie in @guardian.

Apposite (if only in its critical posture): “The Two Paper Rule.” See also “In what sense is the science of science a science?” for context.

Zygmunt Bauman

###

As we noodle on knowledge, we might recall that it was on this date in 1964 that AT&T connected the first Picturephone call (between Disneyland in California and the World’s Fair in New York). The device consisted of a telephone handset and a small, matching TV, which allowed telephone users to see each other in fuzzy video images as they carried on a conversation. It was commercially-released shortly thereafter (prices ranged from $16 to $27 for a three-minute call between special booths AT&T set up in New York, Washington, and Chicago), but didn’t catch on.

source