(Roughly) Daily

Posts Tagged ‘astronomy

“Men have become the tools of their tools”*…

Visionary philosopher Bernard Stiegler argued that it’s not our technology that makes humans special; rather, it’s our relationship with that technology. Bryan Norton explains…

It has become almost impossible to separate the effects of digital technologies from our everyday experiences. Reality is parsed through glowing screens, unending data feeds, biometric feedback loops, digital protheses and expanding networks that link our virtual selves to satellite arrays in geostationary orbit. Wristwatches interpret our physical condition by counting steps and heartbeats. Phones track how we spend our time online, map the geographic location of the places we visit and record our histories in digital archives. Social media platforms forge alliances and create new political possibilities. And vast wireless networks – connecting satellites, drones and ‘smart’ weapons – determine how the wars of our era are being waged. Our experiences of the world are soaked with digital technologies.

But for the French philosopher Bernard Stiegler, one of the earliest and foremost theorists of our digital age, understanding the world requires us to move beyond the standard view of technology. Stiegler believed that technology is not just about the effects of digital tools and the ways that they impact our lives. It is not just about how devices are created and wielded by powerful organisations, nation-states or individuals. Our relationship with technology is about something deeper and more fundamental. It is about technics.

According to Stiegler, technics – the making and use of technology, in the broadest sense – is what makes us human. Our unique way of existing in the world, as distinct from other species, is defined by the experiences and knowledge our tools make possible, whether that is a state-of-the-art brain-computer interface such as Neuralink, or a prehistoric flint axe used to clear a forest. But don’t be mistaken: ‘technics’ is not simply another word for ‘technology’. As Martin Heidegger wrote in his essay ‘The Question Concerning Technology’ (1954), which used the German term Technik instead of Technologie in the original title: the ‘essence of technology is by no means anything technological.’ This aligns with the history of the word: the etymology of ‘technics’ leads us back to something like the ancient Greek term for art – technē. The essence of technology, then, is not found in a device, such as the one you are using to read this essay. It is an open-ended creative process, a relationship with our tools and the world.

This is Stiegler’s legacy. Throughout his life, he took this idea of technics, first explored while he was imprisoned for armed robbery, further than anyone else. But his ideas have often been overlooked and misunderstood, even before he died in 2020. Today, they are more necessary than ever. How else can we learn to disentangle the effects of digital technologies from our everyday experiences? How else can we begin to grasp the history of our strange reality?…

[Norton unspools Stiegler’s remarkable life and the development of his thought…]

… Technology, for better or worse, affects every aspect of our lives. Our very sense of who we are is shaped and reshaped by the tools we have at our disposal. The problem, for Stiegler, is that when we pay too much attention to our tools, rather than how they are developed and deployed, we fail to understand our reality. We become trapped, merely describing the technological world on its own terms and making it even harder to untangle the effects of digital technologies and our everyday experiences. By encouraging us to pay closer attention to this world-making capacity, with its potential to harm and heal, Stiegler is showing us what else is possible. There are other ways of living, of being, of evolving. It is technics, not technology, that will give the future its new face…

Eminently worth reading in full: “Our tools shape our selves,” from @br_norton in @aeonmag.

Compare and contrast: Kevin Kelly‘s What Technology Wants

* Henry David Thoreau

###

As we own up, we might send phenomenological birthday greetings to Immanuel Kant; he was born on this date in 1724.  One of the central figures of modern philosophy, Kant is remembered primarily for his efforts to unite reason with experience (e.g., Critique of Pure Reason [Kritik der reinen Vernunft], 1781), and for his work on ethics (e.g., Metaphysics of Morals [Die Metaphysik der Sitten], 1797) and aesthetics (e.g., Critique of Judgment [Kritik der Urteilskraft], 1790).  

But Kant made important contributions to mathematics and astronomy. For example: his argument that mathematical truths are a form of synthetic a priori knowledge was cited by Einstein as an important early influence on his work.  And his description of the Milky Way as a lens-shaped collection of stars that represented only one of many “island universes,” was later shown to be accurate by Herschel.

Act so as to treat humanity, whether in your own person or in that of another, at all times also as an end, and not only as a means.

Metaphysic of Morals

 source

“It is impossible to contemplate the spectacle of the starry universe without wondering how it was formed”*…

Two of the four Auxiliary Telescopes of the ESO’s Very Large Telescope at the Paranal Observatory in the Atacama Region of Chile.

Paul Constance on how Chile, a country riven by inequality and political conflict, has become a global sanctuary for the long science that drives astronomical discovery, and on the questions that raises…

… The next era of astronomy will depend on instruments so complicated and costly that no single nation can build them. A list of contributors to the James Webb Space Telescope, for example, includes 35 universities and 280 public agencies and private companies in 14 countries. This aggregation of design, engineering, construction and software talent from around the planet is a hallmark of “big science” projects. But large telescopes are also emblematic of the outsized timescales of “long science.” They depend on a fragile amalgam of trust, loyalty, institutional prestige and sheer endurance that must sustain a project for two or three decades before “first light,” or the moment when a telescope actually begins to gather data.

“It takes a generation to build a telescope,” Charles Alcock, director of the Harvard-Smithsonian Center for Astrophysics and a member of Giant Magellan Telescope (GMT) board, said some years ago. Consider the logistics involved in a single segment of the GMT’s construction: the process of fabricating its seven primary mirrors, each measuring 27 feet in diameter and using 17 metric tons of specialized Japanese glass. The only facility capable of casting mirrors this large (by melting the glass inside a clam-shaped oven at 2,100 degrees Fahrenheit) is situated deep beneath University of Arizona football stadium. It takes three months for the molten glass to cool. Over the next four years, the mirror will be mounted, ground and slowly polished to a precision of around one millionth of an inch.  The GMT’s first mirror was cast in 02005; its seventh will be finished sometime in 02027. Building the 1,800-ton steel structure that will hold these mirrors, shipping the enormous parts by sea, assembling the telescope atop Cerro Las Campanas, and then testing and calibrating its incommunicably delicate instruments will take several more years.

Not surprisingly, these projects don’t even attempt to raise their full budgets up front. Instead, they operate on a kind of faith, scraping together private grants and partial transfers from governments and universities to make incremental progress, while constantly lobbying for additional funding. At each stage, they must defend nebulous objectives (“understanding the nature of dark matter”) against the claims of disciplines with more tangible and near-term goals, such as fusion energy. And given the very real possibility that they will not be completed, big telescopes require what private equity investors might describe as the world’s most patient risk capital.

Few countries have been more successful at attracting this kind of capital than Chile. The GMT is one of three colossal observatories currently under construction in the Atacama Desert. The $1.6 billion Extremely Large Telescope, which will house a 128-foot main mirror inside a dome nearly as tall as the Statue of Liberty, will be able to directly image and study the atmospheres of potentially habitable exoplanets. The $1.9 billion Vera T. Rubin Telescope will use a 3.500 megapixel digital camera to map the entire night sky every three days, creating the first 3-D virtual map of the visible cosmos while recording changes in stars and events like supernovas. Two other comparatively smaller projects, the Fred Young Sub-millimeter Telescope and the Cherenkov Telescope Array, are also in the works.

Chile is already home to the $1.4 billion Atacama Large Millimeter Array (ALMA), a complex of 66 huge dish antennas some 16,000 feet above sea level that used to be described as the world’s largest and most expensive land-based astronomical project. And over the last half-century, enormous observatories at Cerro Tololo, Cerro Pachon, Cerro Paranal, and Cerro La Silla have deployed hundreds of the world’s most sophisticated telescopes and instruments to obtain foundational evidence in every branch of astronomy and astrophysics.

By the early 02030s, a staggering 70 percent of the world’s entire land-based astronomical data gathering capacity is expected to be concentrated in a swath of Chilean desert about the size of Oregon.

Collectively, this cluster of observatories represents expenditures and collaboration on a scale similar to “big science” landmarks such as the Large Hadron Collider or the Manhattan Project. Those enterprises were the product of ambitious, long-term strategies conceived and executed by a succession of visionary leaders. But according to Barbara Silva, a historian of science at Chile’s Universidad Alberto Hurtado, there has been no grand plan, and no one can legitimately take credit for turning Chile into the global capital of astronomy…

Stumbling Toward First Light,” from @presentbias and @longnow.

* Henri Poincaré

###

As we look up, we might recall that it was on this date in 2001 that NASA launched the Mars Odyssey, sending back stunning images from its tv cameras during its fiery ascent. Odyssey traveled 286 million miles before entering orbit around the red planet the following October.

Its mission was (and is– at 22-and-a-half years, it’s the longest-serving spacecraft at Mars) to use its spectrometers and a thermal imager to detect evidence of past or present water and ice, as well as study the planet’s geology and radiation environment in a quest to help answer the question of whether life once existed on Mars and to create a risk-assessment of the radiation that future astronauts on Mars might experience. (As a bonus, it acts as a relay for communications between the Curiosity rover [and previously the Mars Exploration Rovers and Phoenix lander] and Earth.)

source

Written by (Roughly) Daily

April 7, 2024 at 1:00 am

“You may delay, but time will not”*…

It turns out that our feeling that things are speeding up has some basis in science…

Earth’s changing spin is threatening to toy with our sense of time, clocks and computerized society in an unprecedented way — but only for a second.

For the first time in history, world timekeepers may have to consider subtracting a second from our clocks in a few years because the planet is rotating a tad faster than it used to. Clocks may have to skip a second — called a “negative leap second” — around 2029, a study in the journal Nature said Wednesday.

“This is an unprecedented situation and a big deal,” said study lead author Duncan Agnew, a geophysicist at the Scripps Institution of Oceanography at the University of California, San Diego. “It’s not a huge change in the Earth’s rotation that’s going to lead to some catastrophe or anything, but it is something notable. It’s yet another indication that we’re in a very unusual time.”

Ice melting at both of Earth’s poles has been counteracting the planet’s burst of speed and is likely to have delayed this global second of reckoning by about three years, Agnew said.

“We are headed toward a negative leap second,” said Dennis McCarthy, retired director of time for the U.S. Naval Observatory who wasn’t part of the study. “It’s a matter of when.”…

The full story: “A faster spinning Earth may cause timekeepers to subtract a second from world clocks,” from @AP.

For (even) more on leap seconds on their history, see “Will We Have a Negative Leap Second?“, by Demetrios Matsakis (also a retired director of time for the U.S. Naval Observatory).

See also: “Climate change is altering Earth’s rotation enough to mess with our clocks” (gift article): “in that one second, the Earth rotated about four football fields”

* Benjamin Franklin

###

As we muse on measurement, we might send carefully-observed birthday greetings to Sir Harold Spencer Jones; he was born on this date in 1890. An astronomer (indeed, for 23 years the tenth Astronomer Royal), he specialized in positional astronomy, particularly the motion and orientation of the Earth in space… a focus that helped him contribute to knowledge of the Earth’s rotation and improved timekeeping– efforts that led to Spencer Jones’ election (in 1947) as the first President of the Royal Institute of Navigation (which, In 1951, named its highest award, the Gold Medal, in his honor).

source

“Prediction is very difficult, especially if it’s about the future”*…

But, as Dylan Matthews reports, some are better at it than others…

The question before a group made up of some of the best forecasters of world events: What are the odds that China will control at least half of Taiwan’s territory by 2030?

Everyone on the chat gives their answer, and in each case it’s a number. Chinmay Ingalagavi, an economics fellow at Yale, says 8 percent. Nuño Sempere, the 25-year-old Spanish independent researcher and consultant leading our session, agrees. Greg Justice, an MBA student at the University of Chicago, pegs it at 17 percent. Lisa Murillo, who holds a PhD in neuroscience, says 15-20 percent. One member of the group, who asked not to be named in this context because they have family in China who could be targeted by the government there, posits the highest figure: 24 percent.

Sempere asks me for my number. Based on a quick analysis of past military clashes between the countries, I came up with 5 percent. That might not seem too far away from the others, but it feels embarrassingly low in this context. Why am I so out of step?

This is a meeting of Samotsvety. The name comes from a 50-year-old Soviet rock band — more on that later — but the modern Samotsvety specializes in predicting the future. And they are very, very good at it. At Infer, a major forecasting platform operated by Rand, the four most accurate forecasters in the site’s history are all members of Samotsvety, and there is a wide gap between them and fifth place. In fact, the gap between them and fifth place is bigger than between fifth and 10th places. They’re waaaaay out ahead.

While Samotsvety members converse on Slack regularly, the Saturday meetings are the heart of the group, and I was sitting in to get a sense of why, exactly, the group was so good. What were these folks doing differently that made them able to see the future when the rest of us can’t?…

The “secrets” of superforecasters: “How a ragtag band of internet friends became the best at forecasting world events,” from @dylanmatt in @voxdotcom.

(Image above: source)

* Niels Bohr

###

As we contemplate change, we might recall that it was on this date in 1781 that William Herschel discovered Uranus. The first planet to be discovered with the aid of a telescope, he initially thought that it was a comet.

And on this date in 1930, Clyde Tombaugh discovered Pluto. Originally designated the ninth planet, it has been “demoted” to minor (or dwarf) planet status.

Written by (Roughly) Daily

March 13, 2024 at 1:00 am

“The pursuit of science is a grand adventure, driven by curiosity, fueled by passion, and guided by reason”*…

Adam Mastroianni on how science advances (and how it’s held back), with a provocative set of suggestions for how it might be accelerated…

There are two kinds of problems in the world: strong-link problems and weak-link problems.

Weak-link problems are problems where the overall quality depends on how good the worst stuff is. You fix weak-link problems by making the weakest links stronger, or by eliminating them entirely.

Food safety, for example, is a weak-link problem. You don’t want to eat anything that will kill you. That’s why it makes sense for the Food and Drug Administration to inspect processing plants, to set standards, and to ban dangerous foods…

Weak-link problems are everywhere. A car engine is a weak-link problem: it doesn’t matter how great your spark plugs are if your transmission is busted. Nuclear proliferation is a weak-link problem: it would be great if, say, France locked up their nukes even tighter, but the real danger is some rogue nation blowing up the world. Putting on too-tight pants is a weak-link problem: they’re gonna split at the seams.

It’s easy to assume that all problems are like this, but they’re not. Some problems are strong-link problems: overall quality depends on how good the best stuff is, and the bad stuff barely matters. Like music, for instance. You listen to the stuff you like the most and ignore the rest. When your favorite band releases a new album, you go “yippee!” When a band you’ve never heard of and wouldn’t like anyway releases a new album, you go…nothing at all, you don’t even know it’s happened. At worst, bad music makes it a little harder for you to find good music, or it annoys you by being played on the radio in the grocery store while you’re trying to buy your beetle-free asparagus…

Strong-link problems are everywhere; they’re just harder to spot. Winning the Olympics is a strong-link problem: all that matters is how good your country’s best athletes are. Friendships are a strong-link problem: you wouldn’t trade your ride-or-dies for better acquaintances. Venture capital is a strong-link problem: it’s fine to invest in a bunch of startups that go bust as long as one of them goes to a billion…

In the long run, the best stuff is basically all that matters, and the bad stuff doesn’t matter at all. The history of science is littered with the skulls of dead theories. No more phlogiston nor phlegm, no more luminiferous ether, no more geocentrism, no more measuring someone’s character by the bumps on their head, no more barnacles magically turning into geese, no more invisible rays shooting out of people’s eyes, no more plum pudding

Our current scientific beliefs are not a random mix of the dumbest and smartest ideas from all of human history, and that’s because the smarter ideas stuck around while the dumber ones kind of went nowhere, on average—the hallmark of a strong-link problem. That doesn’t mean better ideas win immediately. Worse ideas can soak up resources and waste our time, and frauds can mislead us temporarily. It can take longer than a human lifetime to figure out which ideas are better, and sometimes progress only happens when old scientists die. But when a theory does a better job of explaining the world, it tends to stick around.

(Science being a strong-link problem doesn’t mean that science is currently strong. I think we’re still living in the Dark Ages, just less dark than before.)

Here’s the crazy thing: most people treat science like it’s a weak-link problem.

Peer reviewing publications and grant proposals, for example, is a massive weak-link intervention. We spend ~15,000 collective years of effort every year trying to prevent bad research from being published. We force scientists to spend huge chunks of time filling out grant applications—most of which will be unsuccessful—because we want to make sure we aren’t wasting our money…

I think there are two reasons why scientists act like science is a weak-link problem.

The first reason is fear. Competition for academic jobs, grants, and space in prestigious journals is more cutthroat than ever. When a single member of a grant panel, hiring committee, or editorial board can tank your career, you better stick to low-risk ideas. That’s fine when we’re trying to keep beetles out of asparagus, but it’s not fine when we’re trying to discover fundamental truths about the world…

The second reason is status. I’ve talked to a lot of folks since I published The rise and fall of peer review and got a lot of comments, and I’ve realized that when scientists tell me, “We need to prevent bad research from being published!” they often mean, “We need to prevent people from gaining academic status that they don’t deserve!” That is, to them, the problem with bad research isn’t really that it distorts the scientific record. The problem with bad research is that it’s cheating

I get that. It’s maddening to watch someone get ahead using shady tactics, and it might seem like the solution is to tighten the rules so we catch more of the cheaters. But that’s weak-link thinking. The real solution is to care less about the hierarchy

Here’s our reward for a generation of weak-link thinking.

The US government spends ~10x more on science today than it did in 1956, adjusted for inflation. We’ve got loads more scientists, and they publish way more papers. And yet science is less disruptive than ever, scientific productivity has been falling for decades, and scientists rate the discoveries of decades ago as worthier than the discoveries of today. (Reminder, if you want to blame this on ideas getting harder to find, I will fight you.)…

Whether we realize it or not, we’re always making calls like this. Whenever we demand certificates, credentials, inspections, professionalism, standards, and regulations, we are saying: “this is a weak-link problem; we must prevent the bad!”

Whenever we demand laissez-faire, the cutting of red tape, the letting of a thousand flowers bloom, we are saying: “this is a strong-link problem; we must promote the good!”

When we get this right, we fill the world with good things and rid the world of bad things. When we don’t, we end up stunting science for a generation. Or we end up eating a lot of asparagus beetles…

Science is a strong-link problem,” from @a_m_mastroianni in @science_seeds.

* James Clerk Maxwell

###

As we ponder the process of progress, we might spare a thought for Sir Christopher Wren; he died on this date in 1723.  A mathematician and astronomer (who co-founded and later served as president of the Royal Society), he is better remembered as one of the most highly acclaimed English architects in history; he was given responsibility for rebuilding 52 churches in the City of London after the Great Fire in 1666, including what is regarded as his masterpiece, St. Paul’s Cathedral, on Ludgate Hill.

Wren, whose scientific work ranged broadly– e.g., he invented a “weather clock” similar to a modern barometer, new engraving methods, and helped develop a blood transfusion technique– was admired by Isaac Newton, as Newton noted in the Principia.

 source