(Roughly) Daily

Posts Tagged ‘time

“The distinction between past, present and future is only a stubbornly persistent illusion”*…

A dog dressed as Marty McFly from Back to the Future attends the 25th Annual Tompkins Square Halloween Dog Parade in New York October 24, 2015.

“The past is obdurate,” Stephen King wrote in his book about a man who goes back in time to prevent the Kennedy assassination. “It doesn’t want to be changed.”

Turns out, King might have been onto something.

Countless science fiction tales have explored the paradox of what would happen if you do something in the past that endangers the future. Perhaps one of the most famous pop culture examples is Back to the Future, when Marty McFly went back in time and accidentally stopped his parents from meeting, putting his own existence in jeopardy.

But maybe McFly wasn’t in much danger after all. According a new paper from researchers at the University of Queensland, even if time travel were possible, the paradox couldn’t actually exist…

Find out why: “Paradox-Free Time Travel Is Theoretically Possible, Researchers Say.

* Albert Einstein


As we ponder predestination, we might send cosmological birthday greetings to Enrico Fermi; he was born on this date in 1901.  A physicist who is best remembered for (literally) presiding over the birth of the Atomic Age, he was also remarkable as the last “double-threat” in his field:  a genius at creating both important theories and elegant experiments.  As recently observed, the division of labor between theorists and experimentalists has since been pretty complete.

The novelist and historian of science C. P. Snow wrote that “if Fermi had been born a few years earlier, one could well imagine him discovering Rutherford’s atomic nucleus, and then developing Bohr’s theory of the hydrogen atom. If this sounds like hyperbole, anything about Fermi is likely to sound like hyperbole.”


Written by LW

September 29, 2020 at 1:01 am

“Evidently, the fundamental laws of nature do not pin down a single and unique universe”*…

For the World Is Hollow and I Have Touched the Sky Original printing of the Flammarion engraving, from 1888.
Artist unknown; from Camille Flammarion, L’Atmosphère: Météorologie Populaire

The name of the image—the “Flammarion engraving”—may not ring a bell, but you’ve seen it many times. It depicts a traveler wearing a cloak and clutching a walking-stick; behind him is a varied landscape of towns and trees; surrounding all is a crystalline shell fretted with countless stars. Reaching the edge of his world, the traveler pushes through to the other side and is dazzled by a whole new world of light and rainbows and fire.

The image was first published in 1888 in a book by French astronomer Camille Flammarion. (The original engraving was black and white, although colorized versions now abound.) He notes that the sky does look like a dome on which the celestial bodies are attached, but impressions deceive. “Our ancestors,” Flammarion writes, “imagined that this blue vault was really what the eye would lead them to believe it to be; but, as Voltaire remarks, this is about as reasonable as if a silk-worm took his web for the limits of the universe.”

The engraving has come to be seen as a symbol of humanity’s quest for knowledge, but I prefer a more literal reading, in keeping with Flammarion’s intent. Time and again in the history of science, we have found an opening in the edge of the known world and poked through. The universe does not end at the orbit of Saturn, nor at the outermost stars of the Milky Way, nor at the most distant galaxy in our field of view. Today cosmologists think whole other universes may be out there.

But that is almost quotidian compared to what quantum mechanics reveals. It is not just a new opening in the dome, but a new kind of opening. Physicists and philosophers have long argued over what quantum theory means, but, in some way or other, they agree that it reveals a vast realm lying beyond the range of our senses. Perhaps the purest incarnation of this principle—the most straightforward reading of the equations of quantum theory—is the many-worlds interpretation, put forward by Hugh Everett in the 1950s. In this view, everything that can happen does in fact happen, somewhere in a vast array of universes, and the probabilities of quantum theory represent the relative numbers of universes experiencing one outcome or another. As David Wallace, a philosopher of physics at the University of Southern California, put it in his 2012 book, The Emergent Multiverse, when we take quantum mechanics literally, “the world turns out to be rather larger than we had anticipated: Indeed, it turns out our classical ‘world’ is only a small part of a much larger reality.”…

If multiverses seem weird, it’s because we need to revamp our notions of time and space: “The Multiple Multiverses May Be One and the Same.”

* Alan Lightman, The Accidental Universe: The World You Thought You Knew


As we find one in many, we might send relativistic birthday greetings to Victor Frederick “Viki” Weisskopf; he was born on this date in 1908. A theoretical physicist who contributed mightily to the golden age of quantum mechanics, Weisskopf did postdoctoral work with Werner Heisenberg, Erwin Schrödinger, Wolfgang Pauli and Niels Bohr. He emigrated from Austria to the U.S. in 1937 to escape Nazi persecution. During World War II he was Group Leader of the Theoretical Division of the Manhattan Project at Los Alamos, and later campaigned against the proliferation of nuclear weapons.


Written by LW

September 20, 2020 at 1:01 am

“Time … thou ceaseless lackey to eternity”*…



Source art: Chronos and His Child by Giovanni Francesco Romanelli


The human mind has long grappled with the elusive nature of time: what it is, how to record it, how it regulates life, and whether it exists as a fundamental building block of the universe…

Quanta‘s fascinating timeline traces our evolving understanding of time through a history of observations in culture, physics, timekeeping, and biology: “Arrows of Time

* Shakespeare, The Rape of Lucrece


As we try to Be Here Now, we might send amusingly insightful birthday greetings to Richard Philips Feynman; he was born on this date in 1918.  A theoretical physicist, Feynman was probably the most brilliant, influential, and iconoclastic figure in his field in the post-WW II era.

Richard Feynman was a once-in-a-generation intellectual. He had no shortage of brains. (In 1965, he won the Nobel Prize in Physics for his work on quantum electrodynamics.) He had charisma. (Witness this outtake [below] from his 1964 Cornell physics lectures [available in full here].) He knew how to make science and academic thought available, even entertaining, to a broader public. (We’ve highlighted two public TV programs hosted by Feynman here and here.) And he knew how to have fun. The clip above brings it all together.

– From Open Culture (where one can also find Feynman’s elegant and accessible 1.5 minute explanation of “The Key to Science.”)


Written by LW

May 11, 2020 at 1:01 am

“Once we introduce the possibility of applying the quantum principle to the universe, we are forced to consider parallel universes”*…




In the Antarctic, things happen at a glacial pace. Just ask Peter Gorham. For a month at a time, he and his colleagues would watch a giant balloon carrying a collection of antennas float high above the ice, scanning over a million square kilometres of the frozen landscape for evidence of high-energy particles arriving from space.

When the experiment returned to the ground after its first flight, it had nothing to show for itself, bar the odd flash of background noise. It was the same story after the second flight more than a year later.

While the balloon was in the sky for the third time, the researchers decided to go over the past data again, particularly those signals dismissed as noise. It was lucky they did. Examined more carefully, one signal seemed to be the signature of a high-energy particle. But it wasn’t what they were looking for. Moreover, it seemed impossible. Rather than bearing down from above, this particle was exploding out of the ground.

That strange finding was made in 2016. Since then, all sorts of suggestions rooted in known physics have been put forward to account for the perplexing signal, and all have been ruled out. What’s left is shocking in its implications. Explaining this signal requires the existence of a topsy-turvy universe created in the same big bang as our own and existing in parallel with it. In this mirror world, positive is negative, left is right and time runs backwards. It is perhaps the most mind-melting idea ever to have emerged from the Antarctic ice ­­– but it might just be true…

Strange particles observed by an experiment in Antarctica could be evidence of an alternative reality where everything is upside down: “We may have spotted a parallel universe going backwards in time.”

* Michio Kaku


As we consider our alternatives, we might recall that it was on this date in 1912, in his “Manuscript on the Special Theory of Relativity,” that Einstein first identified the fourth dimension as time… or so it is widely accepted.  Some physicists believe that Einstein was making a subtler– and much more complicated– suggestion, “x4 = ict”: that the fourth dimension, not “physical” like the other three, but emergent (in a way “understandable” as time) as the fourth dimension expands from the other three at the rate of “c.”

Screen Shot 2020-04-12 at 1.59.50 PM source



Written by LW

April 15, 2020 at 1:01 am

“Until you’re ready to look foolish, you’ll never have the possibility of being great”*…




On May 2, 2019 thousands of fans streamed into Barclays Center for the Brooklyn leg of Cher’s “Here We Go Again” tour to see her for the first — or the 30th — time…


More fabulous fans at “The Look Book Goes to a Cher Concert.”

* Cher


As we emulate idols, we might recall that it was on this date in 1975 that the Goddess of Pop graced the cover of Time.

Cher-on-cover-of-Time-March-17-1975.1 source


Written by LW

March 17, 2020 at 1:01 am

%d bloggers like this: