Posts Tagged ‘timeline’
“Some historians hold that history is just one damned thing after another”*…
… and in one sense, it is. From Matan Stauber, a remarkable demonstration…
“Histography” is interactive timeline that spans across 14 billion years of history, from the Big Bang to 2015.
The site draws historical events from Wikipedia and self-updates daily with new recorded events.
The interface allows for users to view between decades to millions of years.
The viewer can choose to watch a variety of events which have happened in a particular period or to target a specific event in time. For example you can look at the past century within the categories of war and inventions…
Explore “Historiography.”
* Arnold Toynbee
###
As we connect the dots, we might send well-preserved birthday greetings to Kevin Brownlow; he was born on this date in 1938. A filmmaker (documentarian and editor), he is best known as a film historian– the film historian of the Silent Era. His initiative in interviewing many largely forgotten, elderly film pioneers in the 1960s and 1970s preserved a legacy of early mass-entertainment cinema. He received an Academy Honorary Award at the 2nd Annual Governors Awards given by the Academy of Motion Picture Arts and Sciences on 13 November 2010– the first time an Academy Honorary Award was given to a film preservationist.
“I was a peripheral visionary. I could see the future, but only way off to the side.”*…

As Niels Bohr said, “prediciton is hard, especially about the future.” Still, we can try…
While the future cannot be predicted with certainty, present understanding in various scientific fields allows for the prediction of some far-future events, if only in the broadest outline. These fields include astrophysics, which studies how planets and stars form, interact, and die; particle physics, which has revealed how matter behaves at the smallest scales; evolutionary biology, which studies how life evolves over time; plate tectonics, which shows how continents shift over millennia; and sociology, which examines how human societies and cultures evolve.
The far future begins after the current millennium comes to an end, starting with the 4th millennium in 3001 CE, and continues until the furthest reaches of future time. These timelines include alternative future events that address unresolved scientific questions, such as whether humans will become extinct, whether the Earth survives when the Sun expands to become a red giant and whether proton decay will be the eventual end of all matter in the Universe…
A new pole star, the end of Niagara Falls, the wearing away of the Canadian Rockies– and these are just highlights from the first 50-60 million years. Read on for an extraordinary outline of what current science suggests is in store over the long haul: “Timeline of the far future,” a remarkable Wikipedia page.
Related pages: List of future astronomical events, Far future in fiction, and Far future in religion.
* Steven Wright
###
As we take the long view, we might send grateful birthday greetings to the man who “wrote the book” on perspective (a capacity analogically handy in the endeavor featured above), Leon Battista Alberti; he was born on this date in 1404. The archetypical Renaissance humanist polymath, Alberti was an author, artist, architect, poet, priest, linguist, philosopher, cartographer, and cryptographer. He collaborated with Toscanelli on the maps used by Columbus on his first voyage, and he published the the first book on cryptography that contained a frequency table.
But he is surely best remembered as the author of the first general treatise– De Pictura (1434)– on the the laws of perspective, which built on and extended Brunelleschi’s work to describe the approach and technique that established the science of projective geometry… and fueled the progress of painting, sculpture, and architecture from the Greek- and Arabic-influenced formalism of the High Middle Ages to the more naturalistic (and Latinate) styles of Renaissance.


“History is who we are and why we are the way we are”*…
What a long, strange trip it’s been…
March 12, 1989 Information Management, a Proposal
While working at CERN, Tim Berners-Lee first comes up with the idea for the World Wide Web. To pitch it, he submits a proposal for organizing scientific documents to his employers titled “Information Management, a Proposal.” In this proposal, Berners-Lee sketches out what the web will become, including early versions of the HTTP protocol and HTML.
…
The first entry a timeline that serves as a table of contents for a series of informative blog posts: “The History of the Web,” from @jay_hoffmann.
* David McCullough
###
As we jack in, we might recall that it was on this date in 1969 that the world first learned of what would become the internet, which would, in turn, become that backbone of the web: UCLA announced it would “become the first station in a nationwide computer network which, for the first time, will link together computers of different makes and using different machine languages into one time-sharing system.” It went on to say that “Creation of the network represents a major forward step in computer technology and may server as the forerunner of large computer networks of the future.”
UCLA will become the first station in a nationwide computer network which, for the first time, will link together computers of different makes and using different machine languages into one time-sharing system.
Creation of the network represents a major forward step in computer technology and may serve as the forerunner of large computer networks of the future.
The ambitious project is supported by the Defense Department’s Advanced Research Project Agency (ARPA), which has pioneered many advances in computer research, technology and applications during the past decade. The network project was proposed and is headed by ARPA’s Dr. Lawrence G. Roberts.
The system will, in effect, pool the computer power, programs and specialized know-how of about 15 computer research centers, stretching from UCLA to M.I.T. Other California network stations (or nodes) will be located at the Rand Corp. and System Development Corp., both of Santa Monica; the Santa Barbara and Berkeley campuses of the University of California; Stanford University and the Stanford Research Institute.
The first stage of the network will go into operation this fall as a subnet joining UCLA, Stanford Research Institute, UC Santa Barbara, and the University of Utah. The entire network is expected to be operational in late 1970.
Engineering professor Leonard Kleinrock [see here], who heads the UCLA project, describes how the network might handle a sample problem:
Programmers at Computer A have a blurred photo which they want to bring into focus. Their program transmits the photo to Computer B, which specializes in computer graphics, and instructs B’s program to remove the blur and enhance the contrast. If B requires specialized computational assistance, it may call on Computer C for help.
The processed work is shuttled back and forth until B is satisfied with the photo, and then sends it back to Computer A. The messages, ranging across the country, can flash between computers in a matter of seconds, Dr. Kleinrock says.
UCLA’s part of the project will involve about 20 people, including some 15 graduate students. The group will play a key role as the official network measurement center, analyzing computer interaction and network behavior, comparing performance against anticipated results, and keeping a continuous check on the network’s effectiveness. For this job, UCLA will use a highly specialized computer, the Sigma 7, developed by Scientific Data Systems of Los Angeles.
Each computer in the network will be equipped with its own interface message processor (IMP) which will double as a sort of translator among the Babel of computer languages and as a message handler and router.
Computer networks are not an entirely new concept, notes Dr. Kleinrock. The SAGE radar defense system of the Fifties was one of the first, followed by the airlines’ SABRE reservation system. At the present time, the nation’s electronically switched telephone system is the world’s largest computer network.
However, all three are highly specialized and single-purpose systems, in contrast to the planned ARPA system which will link a wide assortment of different computers for a wide range of unclassified research functions.
“As of now, computer networks are still in their infancy,” says Dr. Kleinrock. “But as they grow up and become more sophisticated, we will probably see the spread of ‘computer utilities’, which, like present electronic and telephone utilities, will service individual homes and offices across the country.”
source
“A map does not just chart, it unlocks and formulates meaning; it forms bridges between here and there, between disparate ideas that we did not know were previously connected”*…

Readers may recall an earlier post on John B. Sparks’ Histomap, a well-known 1931 attempt to visualize the 4,000 year history of global power. Public Domain Review takes a look at Histomap‘s ancestor/inspiration, Friedrich Strass’ Der Strom der Zeiten (published in 1803), and its influence…
In his foundational textbook Elements, the Alexandrian mathematician Euclid defined a line as “breadthless length” — a thing with only one dimension. That’s what lines can do to history when used to plot events: they condense its breadth into pure motion, featuring only those people and places that serve as forces thrusting it forwards along an infinite axis. Early in the nineteenth century, Friedrich Strass proposed a different way to visualize time’s flow. A Prussian historian and schoolteacher, he published his chronological chart in 1803, a massive diagram titled Der Strom der Zeiten oder bildliche Darstellung der Weltgeschichte von den altesten Zeiten bis zum Ende des achtzehnden Jahrhunderts (The stream of the times or an illustrated presentation of world history from the most ancient times until the eighteenth century). The linear timelines that Strass resisted, like those inspired by Joseph Priestley, “implied a uniformity in the processes of history that was simply misleading”, write Anthony Grafton and Daniel Rosenberg. Strass’ stream, by contrast, allowed historical events to “ebb and flow, fork and twist, run and roll and thunder.” It would spawn several imitations as the century drew on…
Capturing history in its organic unfolding: “The Stream of Time,” from @PublicDomainRev. See the original at the David Rumsey Map Collection.
* Reif Larsen
###
As we contemplate chronology, we might recall that it was on this date in 1800 that the Library of Congress was established. James Madison has first proposed a national library in 1783. But it wasn’t until 1800, when (on this date) President John Adams signed signed an act of Congress providing for the transfer of the seat of government from Philadelphia to the new capital city of Washington, that the deed was done. The Act appropriated $5,000 “for the purchase of such books as may be necessary for the use of Congress … and for fitting up a suitable apartment for containing them.” Books were ordered from London, creating a collection consisting of 740 books and three maps, which were housed in the new United States Capitol.
But in 1814, during the War of 1812, British forces burned the Capitol Building, and with it, the the collection (by then, around 3,000 volumes). The Library as we know it was created from those ashes. Thomas Jefferson offered to sell his personal library– 6,487 books– as a replacement, Congress accepted, and the Library of Congress grew from there.

“To be ignorant of what occurred before you were born is to remain always a child”*…

There’s history… and then there’s deep history. C. Patrick Doncaster, a professor of ecology at Southampton University has created “Timeline of the human Condition- Milestones in Evolution and History.” Starting with the Big Bang (13.8 billion years ago) it marks significant events in Earth’s development, the evolution of life, and the development of human culture (science/technology, economics, politics, and art) all the way up to 2021.
It concludes with a trio of handy analogies…
Following the big bang 13.8 billion years ago, time passed two-thirds of the way to the present before the formation of the Sun 4.57 billion years ago. Rescaled to a calendar year, starting with the big bang at 00:00:00 on 1 January, the Sun forms on 1 September, the Earth on 2 September, earliest signs of life appear on 13 September, earliest true mammals on 26 December, and humans just 2 hours before year’s end. For a year that starts with the earliest true mammals, the dinosaurs go extinct on 17 August, earliest primates appear on 9 September, and humans at dawn of 25 December. For a year that starts with the earliest humans, our own species appears on 19 November, the first built constructions on 8 December, and agricultural farming begins at midday on 29 December.
“Timeline of the Human Condition- Milestones in Evolution and History.” (via @Recomendo6)
See also: “How We Make Sense of Time.”
* Marcus Tullius Cicero
###
As we prize perspective, we might spare a thought for James Hiram Bedford; he died on this date in 1967. A psychologist who wrote several books on occupational counseling, he is best remembered as the first person whose body was cryopreserved after legal death. He remains preserved at the Alcor Life Extension Foundation in Arizona.
You must be logged in to post a comment.