(Roughly) Daily

“Over the long term, symbiosis is more useful than parasitism. More fun, too.”*…

Blue-green formations of malachite form in copper deposits near the surface as they weather. But they could only arise after life raised atmospheric oxygen levels, starting about 2.5 billion years ago.

There are many more varieties of minerals on earth than previously believed– and about half of them formed as parts or byproducts of living things…

The impact of Earth’s geology on life is easy to see, with organisms adapting to environments as different as deserts, mountains, forests, and oceans. The full impact of life on geology, however, can be easy to miss.

A comprehensive new survey of our planet’s minerals now corrects that omission. Among its findings is evidence that about half of all mineral diversity is the direct or indirect result of living things and their byproducts. It’s a discovery that could provide valuable insights to scientists piecing together Earth’s complex geological history—and also to those searching for evidence of life beyond this world.

In a pair of papers published on July 1, 2022 in American Mineralogist, researchers Robert HazenShaunna Morrison and their collaborators outline a new taxonomic system for classifying minerals, one that places importance on precisely how minerals form, not just how they look. In so doing, their system acknowledges how Earth’s geological development and the evolution of life influence each other.

Their new taxonomy, based on an algorithmic analysis of thousands of scientific papers, recognizes more than 10,500 different types of minerals. That’s almost twice as many as the roughly 5,800 mineral “species” in the classic taxonomy of the International Mineralogical Association, which focuses strictly on a mineral’s crystalline structure and chemical makeup.

Morrison and Hazen also identified 57 processes that individually or in combination created all known minerals. These processes included various types of weathering, chemical precipitations, metamorphic transformation inside the mantle, lightning strikes, radiation, oxidation, massive impacts during Earth’s formation, and even condensations in interstellar space before the planet formed. They confirmed that the biggest single factor in mineral diversity on Earth is water, which through a variety of chemical and physical processes helps to generate more than 80 percent of minerals.

But they also found that life is a key player: One-third of all mineral kinds form exclusively as parts or byproducts of living things—such as bits of bones, teeth, coral, and kidney stones (which are all rich in mineral content) or feces, wood, microbial mats, and other organic materials that over geologic time can absorb elements from their surroundings and transform into something more like rock. Thousands of minerals are shaped by life’s activity in other ways, such as germanium compounds that form in industrial coal fires. Including substances created through interactions with byproducts of life, such as the oxygen produced in photosynthesis, life’s fingerprints are on about half of all minerals.

But they also found that life is a key player: One-third of all mineral kinds form exclusively as parts or byproducts of living things—such as bits of bones, teeth, coral, and kidney stones (which are all rich in mineral content) or feces, wood, microbial mats, and other organic materials that over geologic time can absorb elements from their surroundings and transform into something more like rock. Thousands of minerals are shaped by life’s activity in other ways, such as germanium compounds that form in industrial coal fires. Including substances created through interactions with byproducts of life, such as the oxygen produced in photosynthesis, life’s fingerprints are on about half of all minerals.

Historically, scientists “have artificially drawn a line between what is geochemistry and what is biochemistry,” said Nita Sahai, a biomineralization specialist at the University of Akron in Ohio who was not involved in the new research. In reality, the boundary between animal, vegetable, and mineral is much more fluid.

A new origins-based system for classifying minerals reveals the huge geochemical imprint that life has left on Earth. It could help us identify other worlds with life too: “Life Helps Make Almost Half of All Minerals on Earth,” from @jojofoshosho0 in @QuantaMagazine.

Larry Wall

###

As we muse on minerals, we might send systemic birthday greetings to Thomas Samuel Kuhn; he was born on this date in 1922.  A physicist, historian, and philosopher of science, Kuhn believed that scientific knowledge didn’t advance in a linear, continuous way, but via periodic “paradigm shifts.”  Karl Popper had approached the same territory in his development of the principle of “falsification” (to paraphrase, a theory isn’t false until it’s proven true; it’s true until it’s proven false).  But while Popper worked as a logician, Kuhn worked as a historian.  His 1962 book The Structure of Scientific Revolutions made his case; and while he had– and has— his detractors, Kuhn’s work has been deeply influential in both academic and popular circles (indeed, the phrase “paradigm shift” has become an English-language staple).

“What man sees depends both upon what he looks at and also upon what his previous visual-conception experience has taught him to see.”

Thomas S. Kuhn, The Structure of Scientific Revolutions

 source

Discover more from (Roughly) Daily

Subscribe now to keep reading and get access to the full archive.

Continue reading