(Roughly) Daily

Posts Tagged ‘Big Bang

“It is well to remember that the entire universe, with one trifling exception, is composed of others”*…

This artist’s impression shows the temperate planet Ross 128 b, with its red dwarf parent star in the background. Credit: ESO/M. Kornmesser

For centuries, scientific discoveries have suggested humanity occupies no privileged place in the universe. But as Mario Livio argues, studies of worlds beyond our solar system could place meaningful new limits on our existential mediocrity…

When the Polish polymath Nicolaus Copernicus proposed in 1543 that the sun, rather than the Earth, was the center of our solar system, he did more than resurrect the “heliocentric” model that had been devised (and largely forgotten) some 18 centuries earlier by the Greek astronomer Aristarchus of Samos. Copernicus—or, rather, the “Copernican principle” that bears his name—tells us that we humans are nothing special. Or, at least, that the planet on which we live is not central to anything outside of us; instead, it’s just another ordinary world revolving around a star.

Our apparent mediocrity has only ascended in the centuries that have passed since Copernicus’s suggestion. In the middle of the 19th century Charles Darwin realized that rather than being the “crown of creation,” humans are simply a natural product of evolution by means of natural selection. Early in the 20th century, astronomer Harlow Shapley deepened our Copernican cosmic demotion, showing that not only the Earth but the whole solar system lacks centrality, residing in the Milky Way’s sleepy outer suburbs rather than the comparatively bustling galactic center. A few years later, astronomer Edwin Hubble showed that galaxies other than the Milky Way exist, and current estimates put the total number of galaxies in the observable universe at a staggering trillion or more.

Since 1995 we have discovered that even within our own Milky Way roughly one of every five sunlike or smaller stars harbors an Earth-size world orbiting in a “Goldilocks” region (neither too hot nor too cold) where liquid water may persist on a rocky planetary surface. This suggests there are at least a few hundred million planets in the Milky Way alone that may in principle be habitable. In roughly the same span of time, observations of the big bang’s afterglow—the cosmic microwave background—have shown that even the ordinary atomic matter that forms planets and people alike constitutes no more than 5 percent of the cosmic mass and energy budget. With each advance in our knowledge, our entire existence retreats from any possible pinnacle, seemingly reduced to flotsam adrift at the universe’s margins.

Believe it or not, the Copernican principle doesn’t even end there. In recent years increasing numbers of physicists and cosmologists have begun to suspect—often against their most fervent hopes—that our entire universe may be but one member of a mind-numbingly huge ensemble of universes: a multiverse.

Interestingly though, if a multiverse truly exists, it also suggests that Copernican cosmic humility can only be taken so far.

The implications of the Copernican principle may sound depressing to anyone who prefers a view of the world regarding humankind as the central or most important element of existence, but notice that every step along the way in extending the Copernican principle represented a major human discovery. That is, each decrease in the sense of our own physical significance was the result of a huge expansion in our knowledge. The Copernican principle teaches us humility, yes, but it also reminds us to keep our curiosity and passion for exploration alive and vibrant…

Fascinating: “How Far Should We Take Our Cosmic Humility?“, from @Mario_Livio in @sciam.

* John Holmes (the poet)

###

As we ponder our place, we might send carefully-observed birthday greetings to Arno Penzias; he was born on this date in 1933. A physicist and radio astronomer, he and Robert Wilson, a collegue at Bell Labs, discovered the cosmic microwave background radiation, which helped establish the Big Bang theory of cosmology– work for which they shared the 1978 Nobel Prize in Physics.

MB radiation is something that anyone old enough to have watched broadcast (that’s to say, pre-cable/streaming) television) has seen:

The way a television works is relatively simple. A powerful electromagnetic wave is transmitted by a tower, where it can be received by a properly sized antenna oriented in the correct direction. That wave has additional signals superimposed atop it, corresponding to audio and visual information that had been encoded. By receiving that information and translating it into the proper format (speakers for producing sound and cathode rays for producing light), we were able to receive and enjoy broadcast programming right in the comfort of our own homes for the first time. Different channels broadcasted at different wavelengths, giving viewers multiple options simply by turning a dial.

Unless, that is, you turned the dial to channel 03.

Channel 03 was — and if you can dig up an old television set, still is — simply a signal that appears to us as “static” or “snow.” That “snow” you see on your television comes from a combination of all sorts of sources:

– human-made radio transmissions,

– the Sun,

– black holes,

– and all sorts of other directional astrophysical phenomena like pulsars, cosmic rays and more.

But if you were able to either block all of those other signals out, or simply took them into account and subtracted them out, a signal would still remain. It would only by about 1% of the total “snow” signal that you see, but there would be no way of removing it. When you watch channel 03, 1% of what you’re watching comes from the Big Bang’s leftover glow. You are literally watching the cosmic microwave background…

This Is How Your Old Television Set Can Prove The Big Bang

“I have not yet lost a feeling of wonder, and of delight, that the delicate motion should reside in all the things around us”*…

The proton, the positively charged particle at the heart of the atom, is an object of unspeakable complexity, one that changes its appearance depending on how it is probed…

“This is the most complicated thing that you could possibly imagine,” said Mike Williams, a physicist at the Massachusetts Institute of Technology. “In fact, you can’t even imagine how complicated it is.”

The proton is a quantum mechanical object that exists as a haze of probabilities until an experiment forces it to take a concrete form. And its forms differ drastically depending on how researchers set up their experiment. Connecting the particle’s many faces has been the work of generations. “We’re kind of just starting to understand this system in a complete way,” said Richard Milner, a nuclear physicist at MIT.

As the pursuit continues, the proton’s secrets keep tumbling out. Most recently, a monumental data analysis published in August found that the proton contains traces of particles called charm quarks that are heavier than the proton itself.

The proton “has been humbling to humans,” Williams said. “Every time you think you kind of have a handle on it, it throws you some curveballs.”

Recently, Milner, together with Rolf Ent at Jefferson Lab, MIT filmmakers Chris Boebel and Joe McMaster, and animator James LaPlante, set out to transform a set of arcane plots that compile the results of hundreds of experiments into a series of animations of the shape-shifting proton…

Charlie Wood (and Merrill Sherman) have incorporated that work into an attempt to unveil the particle’s secrets: “Inside the Proton, the ‘Most Complicated Thing You Could Possibly Imagine’,” from @walkingthedot in @QuantaMagazine.

* Edmund Burke

###

As we ponder presumptive paradoxes, we might send insightful birthday greetings to David Schramm; he was born on this date in 1945. A theoretical astrophysicist, he established the field of particle astrophysics, a branch of particle physics that studies elementary particles of astronomical origin and their relation to astrophysics and cosmology. He was particularly well known for the study of Big Bang nucleosynthesis and its use as a probe of dark matter and of neutrinos. And he made important contributions to the study of cosmic rays, supernova explosions, heavy-element nucleosynthesis, and nuclear astrophysics generally.

source

Written by (Roughly) Daily

October 25, 2022 at 1:00 am

“It is difficult to fully appreciate how much our picture of the universe has changed in the span of a single human lifetime”*…

… and it continues to change…

Our universe could be the mirror image of an antimatter universe extending backwards in time before the Big Bang. So claim physicists in Canada, who have devised a new cosmological model positing the existence of an “antiuniverse” which, paired to our own, preserves a fundamental rule of physics called CPT symmetry. The researchers still need to work out many details of their theory, but they say it naturally explains the existence of dark matter.

Standard cosmological models tell us that the universe – space, time and mass/energy – exploded into existence some 14 billion years ago and has since expanded and cooled, leading to the progressive formation of subatomic particles, atoms, stars and planets.

However, Neil Turok of the Perimeter Institute for Theoretical Physics in Ontario reckons that these models’ reliance on ad-hoc parameters means they increasingly resemble Ptolemy’s description of the solar system. One such parameter, he says, is the brief period of rapid expansion known as inflation that can account for the universe’s large-scale uniformity. “There is this frame of mind that you explain a new phenomenon by inventing a new particle or field,” he says. “I think that may turn out to be misguided.”

nstead, Turok and his Perimeter Institute colleague Latham Boyle set out to develop a model of the universe that can explain all observable phenomena based only on the known particles and fields. They asked themselves whether there is a natural way to extend the universe beyond the Big Bang – a singularity where general relativity breaks down – and then out the other side. “We found that there was,” he says.

The answer was to assume that the universe as a whole obeys CPT symmetry. This fundamental principle requires that any physical process remains the same if time is reversed, space inverted and particles replaced by antiparticles. Turok says that this is not the case for the universe that we see around us, where time runs forward as space expands, and there’s more matter than antimatter.

Instead, says Turok, the entity that respects the symmetry is a universe–antiuniverse pair. The antiuniverse would stretch back in time from the Big Bang, getting bigger as it does so, and would be dominated by antimatter as well as having its spatial properties inverted compared to those in our universe [as per the illustration above]…

More at “Our universe has antimatter partner on the other side of the Big Bang, say physicists,” in @PhysicsWorld.

Apposite: “The Big Bang no longer means what it used to.”

* Lawrence M. Krauss, A Universe from Nothing: Why There Is Something Rather Than Nothing

###

As we debate doppelgangers, we might send chronologically-accurate birthday greetings to Louis Essen; he was born on this date in 1908. A physicist, he is best remembered for his measurements of time– he invented the quartz crystal ring clock and the first practical atomic clock. His cesium-beam atomic clock ultimately changed the way time is measured: the cesium atom’s natural frequency was formally recognized as the new international unit of time in 1967; the second was defined as exactly 9,192,631,770 oscillations or cycles of the cesium atom’s resonant frequency, replacing the old “second” which had been defined in terms of the Earth’s motion.

Perhaps unsurprisingly, given Essen’s punctilious dedication to accuracy, he was a critic of Einstein’s theory of relativity, particularly as it related to time dilation. Moreover, we note (with an eye to the item above) that Essen’s clocks measured time in only one direction…

source

Written by (Roughly) Daily

September 6, 2022 at 1:00 am

“A mind that is stretched by a new idea can never go back to its original dimensions”*…

Alex Berezow observes (in an appreciation of Peter AtkinsGalileo’s Finger: The Ten Great Ideas of Science) that, while scientific theories are always being tested, scrutinized for flaws, and revised, there are ten concepts so durable that it is difficult to imagine them ever being replaced with something better…

In his book The Structure of Scientific Revolutions, Thomas Kuhn argued that science, instead of progressing gradually in small steps as is commonly believed, actually moves forward in awkward leaps and bounds. The reason for this is that established theories are difficult to overturn, and contradictory data is often dismissed as merely anomalous. However, at some point, the evidence against the theory becomes so overwhelming that it is forcefully displaced by a better one in a process that Kuhn refers to as a “paradigm shift.” And in science, even the most widely accepted ideas could, someday, be considered yesterday’s dogma.

Yet, there are some concepts which are considered so rock solid, that it is difficult to imagine them ever being replaced with something better. What’s more, these concepts have fundamentally altered their fields, unifying and illuminating them in a way that no previous theory had done before…

The bedrock of modern biology, chemistry, and physics: “The ten greatest ideas in the history of science,” from @AlexBerezow in @bigthink.

* Oliver Wendell Holmes

###

As we forage for first principles, we might send carefully-calcuated birthday greetings to Georgiy Antonovich Gamov; he was born on this date in 1904. Better known by the name he adopted on immigrating to the U.S., George Gamow, he was a physicist and cosmologist whose early work was instrumental in developing the Big Bang theory of the universe; he also developed the first mathematical model of the atomic nucleus. In 1954, he expanded his interests into biochemistry and his work on deoxyribonucleic acid (DNA) made a basic contribution to modern genetic theory.

But mid-career Gamow began to shift his energy to teaching and to writing popular books on science… one of which, One Two Three… Infinity, inspired legions of young scientists-to-be and kindled a life-long interest in science in an even larger number of other youngsters (including your correspondent).

source

“I’m sure the universe is full of intelligent life. It’s just been too intelligent to come here.”*…

 

aliens-1024x576

 

The Fermi paradox, named for physicist Enrico Fermi, is the apparent contradiction between the lack of evidence for extraterrestrial civilizations and various high estimates for their probability (e.g., some of the optimistic estimates for the Drake equation).  Fermi wondered, “where are they?”

By way of context, Tim Urban in his wonderful Wait But Why?:

As many stars as there are in our galaxy (100 – 400 billion), there are roughly an equal number of galaxies in the observable universe—so for every star in the colossal Milky Way, there’s a whole galaxy out there. All together, that comes out to the typically quoted range of between 1022 and 1024 total stars, which means that for every grain of sand on every beach on Earth, there are 10,000 stars out there.

The science world isn’t in total agreement about what percentage of those stars are “sun-like” (similar in size, temperature, and luminosity)—opinions typically range from 5% to 20%. Going with the most conservative side of that (5%), and the lower end for the number of total stars (1022), gives us 500 quintillion, or 500 billion billion sun-like stars.

There’s also a debate over what percentage of those sun-like stars might be orbited by an Earth-like planet (one with similar temperature conditions that could have liquid water and potentially support life similar to that on Earth). Some say it’s as high as 50%, but let’s go with the more conservative 22% that came out of a recent PNAS study. That suggests that there’s a potentially-habitable Earth-like planet orbiting at least 1% of the total stars in the universe—a total of 100 billion billion Earth-like planets.

So there are 100 Earth-like planets for every grain of sand in the world. Think about that next time you’re on the beach.

Moving forward, we have no choice but to get completely speculative. Let’s imagine that after billions of years in existence, 1% of Earth-like planets develop life (if that’s true, every grain of sand would represent one planet with life on it). And imagine that on 1% of those planets, the life advances to an intelligent level like it did here on Earth. That would mean there were 10 quadrillion, or 10 million billion intelligent civilizations in the observable universe.

Moving back to just our galaxy, and doing the same math on the lowest estimate for stars in the Milky Way (100 billion), we’d estimate that there are 1 billion Earth-like planets and 100,000 intelligent civilizations in our galaxy.1

SETI (Search for Extraterrestrial Intelligence) is an organization dedicated to listening for signals from other intelligent life. If we’re right that there are 100,000 or more intelligent civilizations in our galaxy, and even a fraction of them are sending out radio waves or laser beams or other modes of attempting to contact others, shouldn’t SETI’s satellite dish array pick up all kinds of signals?

But it hasn’t. Not one. Ever…

Perhaps. as we’ve mused here at (R)D before, life is there, but we’re not seeing it because it isn’t a form of life that we recognize: c.f., “Two possibilities exist: Either we are alone in the Universe or we are not. Both are equally terrifying” and “That is a very Earthling question to ask, Mr. Pilgrim.”

But there are some who’ve refused to give up on the search for more traditionally-defined life; indeed, a new study quantifies the “fraction” (to which Urban alludes, above) of civilizations that could (should?) be communicating around our galaxy:

One of the biggest and longest-standing questions in the history of human thought is whether there are other intelligent life forms within our Universe. Obtaining good estimates of the number of possible extraterrestrial civilizations has however been very challenging.

A new study led by the University of Nottingham and published [earlier this month] in The Astrophysical Journal has taken a new approach to this problem. Using the assumption that intelligent life forms on other planets in a similar way as it does on Earth, researchers have obtained an estimate for the number of intelligent communicating civilizations within our own galaxy -the Milky Way. They calculate that there could be over 30 active communicating intelligent civilizations in our home Galaxy…

Details at (the slightly misleadingly-titled): “Research sheds new light on intelligent life existing across the galaxy.”

* Arthur C. Clarke

###

As we stay tuned, we might send far-seeing birthday greeting to Fred Hoyle; he was born on this date in 1915.  A prominent astronomer, he formulated the theory of stellar nucleosynthesis.  But he is rather better remembered for his controversial stances on other scientific matters—in particular his rejection of the “Big Bang” theory (a term he coined, derisively, in one of his immensely-popular series The Nature of the Universe on BBC radio) and his promotion of panspermia as the source of life on Earth.

220px-Fred_Hoyle source

 

Written by (Roughly) Daily

June 24, 2020 at 1:01 am

%d bloggers like this: