(Roughly) Daily

Posts Tagged ‘multiverse

“It is well to remember that the entire universe, with one trifling exception, is composed of others”*…

This artist’s impression shows the temperate planet Ross 128 b, with its red dwarf parent star in the background. Credit: ESO/M. Kornmesser

For centuries, scientific discoveries have suggested humanity occupies no privileged place in the universe. But as Mario Livio argues, studies of worlds beyond our solar system could place meaningful new limits on our existential mediocrity…

When the Polish polymath Nicolaus Copernicus proposed in 1543 that the sun, rather than the Earth, was the center of our solar system, he did more than resurrect the “heliocentric” model that had been devised (and largely forgotten) some 18 centuries earlier by the Greek astronomer Aristarchus of Samos. Copernicus—or, rather, the “Copernican principle” that bears his name—tells us that we humans are nothing special. Or, at least, that the planet on which we live is not central to anything outside of us; instead, it’s just another ordinary world revolving around a star.

Our apparent mediocrity has only ascended in the centuries that have passed since Copernicus’s suggestion. In the middle of the 19th century Charles Darwin realized that rather than being the “crown of creation,” humans are simply a natural product of evolution by means of natural selection. Early in the 20th century, astronomer Harlow Shapley deepened our Copernican cosmic demotion, showing that not only the Earth but the whole solar system lacks centrality, residing in the Milky Way’s sleepy outer suburbs rather than the comparatively bustling galactic center. A few years later, astronomer Edwin Hubble showed that galaxies other than the Milky Way exist, and current estimates put the total number of galaxies in the observable universe at a staggering trillion or more.

Since 1995 we have discovered that even within our own Milky Way roughly one of every five sunlike or smaller stars harbors an Earth-size world orbiting in a “Goldilocks” region (neither too hot nor too cold) where liquid water may persist on a rocky planetary surface. This suggests there are at least a few hundred million planets in the Milky Way alone that may in principle be habitable. In roughly the same span of time, observations of the big bang’s afterglow—the cosmic microwave background—have shown that even the ordinary atomic matter that forms planets and people alike constitutes no more than 5 percent of the cosmic mass and energy budget. With each advance in our knowledge, our entire existence retreats from any possible pinnacle, seemingly reduced to flotsam adrift at the universe’s margins.

Believe it or not, the Copernican principle doesn’t even end there. In recent years increasing numbers of physicists and cosmologists have begun to suspect—often against their most fervent hopes—that our entire universe may be but one member of a mind-numbingly huge ensemble of universes: a multiverse.

Interestingly though, if a multiverse truly exists, it also suggests that Copernican cosmic humility can only be taken so far.

The implications of the Copernican principle may sound depressing to anyone who prefers a view of the world regarding humankind as the central or most important element of existence, but notice that every step along the way in extending the Copernican principle represented a major human discovery. That is, each decrease in the sense of our own physical significance was the result of a huge expansion in our knowledge. The Copernican principle teaches us humility, yes, but it also reminds us to keep our curiosity and passion for exploration alive and vibrant…

Fascinating: “How Far Should We Take Our Cosmic Humility?“, from @Mario_Livio in @sciam.

* John Holmes (the poet)


As we ponder our place, we might send carefully-observed birthday greetings to Arno Penzias; he was born on this date in 1933. A physicist and radio astronomer, he and Robert Wilson, a collegue at Bell Labs, discovered the cosmic microwave background radiation, which helped establish the Big Bang theory of cosmology– work for which they shared the 1978 Nobel Prize in Physics.

MB radiation is something that anyone old enough to have watched broadcast (that’s to say, pre-cable/streaming) television) has seen:

The way a television works is relatively simple. A powerful electromagnetic wave is transmitted by a tower, where it can be received by a properly sized antenna oriented in the correct direction. That wave has additional signals superimposed atop it, corresponding to audio and visual information that had been encoded. By receiving that information and translating it into the proper format (speakers for producing sound and cathode rays for producing light), we were able to receive and enjoy broadcast programming right in the comfort of our own homes for the first time. Different channels broadcasted at different wavelengths, giving viewers multiple options simply by turning a dial.

Unless, that is, you turned the dial to channel 03.

Channel 03 was — and if you can dig up an old television set, still is — simply a signal that appears to us as “static” or “snow.” That “snow” you see on your television comes from a combination of all sorts of sources:

– human-made radio transmissions,

– the Sun,

– black holes,

– and all sorts of other directional astrophysical phenomena like pulsars, cosmic rays and more.

But if you were able to either block all of those other signals out, or simply took them into account and subtracted them out, a signal would still remain. It would only by about 1% of the total “snow” signal that you see, but there would be no way of removing it. When you watch channel 03, 1% of what you’re watching comes from the Big Bang’s leftover glow. You are literally watching the cosmic microwave background…

This Is How Your Old Television Set Can Prove The Big Bang

“Evidently, the fundamental laws of nature do not pin down a single and unique universe”*…

For the World Is Hollow and I Have Touched the Sky Original printing of the Flammarion engraving, from 1888.
Artist unknown; from Camille Flammarion, L’Atmosphère: Météorologie Populaire

The name of the image—the “Flammarion engraving”—may not ring a bell, but you’ve seen it many times. It depicts a traveler wearing a cloak and clutching a walking-stick; behind him is a varied landscape of towns and trees; surrounding all is a crystalline shell fretted with countless stars. Reaching the edge of his world, the traveler pushes through to the other side and is dazzled by a whole new world of light and rainbows and fire.

The image was first published in 1888 in a book by French astronomer Camille Flammarion. (The original engraving was black and white, although colorized versions now abound.) He notes that the sky does look like a dome on which the celestial bodies are attached, but impressions deceive. “Our ancestors,” Flammarion writes, “imagined that this blue vault was really what the eye would lead them to believe it to be; but, as Voltaire remarks, this is about as reasonable as if a silk-worm took his web for the limits of the universe.”

The engraving has come to be seen as a symbol of humanity’s quest for knowledge, but I prefer a more literal reading, in keeping with Flammarion’s intent. Time and again in the history of science, we have found an opening in the edge of the known world and poked through. The universe does not end at the orbit of Saturn, nor at the outermost stars of the Milky Way, nor at the most distant galaxy in our field of view. Today cosmologists think whole other universes may be out there.

But that is almost quotidian compared to what quantum mechanics reveals. It is not just a new opening in the dome, but a new kind of opening. Physicists and philosophers have long argued over what quantum theory means, but, in some way or other, they agree that it reveals a vast realm lying beyond the range of our senses. Perhaps the purest incarnation of this principle—the most straightforward reading of the equations of quantum theory—is the many-worlds interpretation, put forward by Hugh Everett in the 1950s. In this view, everything that can happen does in fact happen, somewhere in a vast array of universes, and the probabilities of quantum theory represent the relative numbers of universes experiencing one outcome or another. As David Wallace, a philosopher of physics at the University of Southern California, put it in his 2012 book, The Emergent Multiverse, when we take quantum mechanics literally, “the world turns out to be rather larger than we had anticipated: Indeed, it turns out our classical ‘world’ is only a small part of a much larger reality.”…

If multiverses seem weird, it’s because we need to revamp our notions of time and space: “The Multiple Multiverses May Be One and the Same.”

* Alan Lightman, The Accidental Universe: The World You Thought You Knew


As we find one in many, we might send relativistic birthday greetings to Victor Frederick “Viki” Weisskopf; he was born on this date in 1908. A theoretical physicist who contributed mightily to the golden age of quantum mechanics, Weisskopf did postdoctoral work with Werner Heisenberg, Erwin Schrödinger, Wolfgang Pauli and Niels Bohr. He emigrated from Austria to the U.S. in 1937 to escape Nazi persecution. During World War II he was Group Leader of the Theoretical Division of the Manhattan Project at Los Alamos, and later campaigned against the proliferation of nuclear weapons.


Written by (Roughly) Daily

September 20, 2020 at 1:01 am

“Chaos is merely order waiting to be deciphered”*…


Let us say we were interested in describing all phenomena in our universe. What type of mathematics would we need? How many axioms would be needed for mathematical structure to describe all the phenomena? Of course, it is hard to predict, but it is even harder not to speculate. One possible conclusion would be that if we look at the universe in totality and not bracket any subset of phenomena, the mathematics we would need would have no axioms at all. That is, the universe in totality is devoid of structure and needs no axioms to describe it. Total lawlessness! The mathematics are just plain sets without structure. This would finally eliminate all metaphysics when dealing with the laws of nature and mathematical structure. It is only the way we look at the universe that gives us the illusion of structure…

Science predicts only the predictable, ignoring most of our universe.  What if neither Platonism nor the multiverse are the accurate approaches to understanding the reality we inhabit?  “Chaos Makes the Multiverse Unnecessary.”

[image above: source]

* José SaramagoThe Double


As we impose order, we might spare a thought for Philipp Frank; he died on this date in 1966. A physicist, mathematician, and philosopher of science, he was Einstein’s successor as professor of theoretical physics at the German University of Prague– a job he got on Einstein’s recommendation– until 1938, when he fled the rise of Nazism and relocated to Harvard.  Frank’s theoretical work covered variational calculus, Hamiltonian geometrical optics, Schrödinger wave mechanics, and relativity; his philosophical work strove to reconcile science and philosophy and “bring about the closest rapprochement between” them.



Written by (Roughly) Daily

July 22, 2017 at 1:01 am

“Life could be horrible in the wrong trouser of time”*…


The challenge that the multiverse poses for the idea of an all-good, all-powerful God is often focused on fine-tuning. If there are infinite universes, then we don’t need a fine tuner to explain why the conditions of our universe are perfect for life, so the argument goes. But some kinds of multiverse pose a more direct threat. The many-worlds interpretation of quantum physicist Hugh Everett III and the modal realism of cosmologist Max Tegmark include worlds that no sane, good God would ever tolerate. The theories are very different, but each predicts the existence of worlds filled with horror and misery.

Of course, plenty of thoughtful people argue that the Earth alone contains too much pain and suffering to be the work of a good God. But many others have disagreed, finding fairly nuanced things to say about what might justify God’s creation of a world that includes a planet like ours. For example, there is no forgiveness, courage, or fortitude without at least the perception of wrongs, danger, and difficulty. The most impressive human moral achievements seem to require such obstacles.

Still, many horrifying things happen with nothing seemingly gained from them. And, Everett’s many-worlds and Tegmark’s modal realism both seem to imply that there are huge numbers of horrific universes inhabited solely by such unfortunates. Someone like myself, who remains attracted to the traditional picture of God as loving creator, is bound to find such consequences shocking…

How scientific cosmology puts a new twist on the problem of evil.  A theist wrestles with the implications of the “Many World” hypothesis: “Evil Triumphs in These Multiverses, and God Is Powerless.”

* Terry Pratchett


As we calculate our blessings, we might send carefully-addressed birthday greetings to Infante Henrique of Portugal, Duke of Viseu, better known as Prince Henry the Navigator; he was born on this date in 1394.  A central figure in 15th-century Portuguese politics and in the earliest days of the Portuguese Empire, Henry encouraged Portugal’s expeditions (and colonial conquests) in Africa– and thus is regarded as the main initiator (as a product both of Portugal’s expeditions and of those that they encouraged by example) of what became known as the Age of Discoveries.



Written by (Roughly) Daily

March 4, 2017 at 1:01 am

“What’s a Multiverse?”*…


Last fall, a hand-picked group of the world’s top theoretical physicists received an invitation to a conference about the multiverse, a subject to which many of them had devoted the majority of their careers. Invitations like these were nothing unusual in their line of work. What was unusual was this conference was not being hosted by a university or research institute, but rather by a Scottish Duke.

And its organizer was not a physicist, but a landscape architect by the name of Charles Jencks.

The physicists were surprised to learn that Jencks had spent the past three years bringing their cosmological theories to life in the form of a massive land installation carved into the hills and pastures of the Nith Valley in southwest Scotland. It was titled “Crawick Multiverse” after the village where it was built, and its features, according to the brochure accompanying the invitation, included a Supercluster of Galaxies, twin Milky Way and Andromeda spiral mounds, the Sun Amphitheater (which seats 5,000), a Comet Walk, Black Holes (“in two different phases”), an Omphalos (a boulder-limned grotto symbolizing Earth’s “mythic navel” [pictured above]) and of course, the multiverse itself…

A panoramic painting of Crawick.

More at “The Duke, The Landscape Architect, and the World’s Most Ambitious Plan to Bring the Cosmos to Earth.”

* Penny: What’s a multiverse?

   Sheldon: GET HER OUT OF HERE!

Big Bang Theory


As we note, with Rebecca Solnit, that a path is simply a prior interpretation of the best way to traverse a landscape, we might send perpetual birthday greetings to Jean Bernard Léon Foucault; he was born on this date in 1819.  A physicist who made an early measurement of the speed of light, discovered eddy currents, and is credited with naming the gyroscope (although he did not invent it), Foucault is best remembered for the (eponymously-named) Foucault’s Pendulum– a long and heavy pendulum suspended from the roof of the Panthéon in Paris– demonstrating the effects of the Earth’s rotation.  In fact, essentially the same experimental approach had been used by Vincenzo Viviani as early as 1661; but it was Foucault’s work that caught the public imagination: within years of his 1851 experiment, the were “Foucault’s Pendulums” hanging– and attracting crowds–in major cities across Europe and America.



Written by (Roughly) Daily

September 18, 2015 at 1:01 am

%d bloggers like this: