(Roughly) Daily

Posts Tagged ‘Cosmology

“The missing link in cosmology is the nature of dark matter and dark energy”*…


Familiar visible matter can be thought of as the privileged percent—actually more like 15 percent—of matter. In business and politics, the interacting 1 percent dominates decision making and policy, while the remaining 99 percent of the population provides less widely acknowledged infrastructure and support—maintaining buildings, keeping cities operational, and getting food to people’s tables. Similarly, ordinary matter dominates almost everything we notice, whereas dark matter, in its abundance and ubiquity, helped create clusters and galaxies and facilitated star formation, but has only limited influence on our immediate surroundings today…

The common assumption is that dark matter is the “glue” that holds together galaxies and galaxy clusters, but resides only in amorphous clouds around them. But what if this assumption isn’t true and it is only our prejudice—and ignorance, which is after all the root of most prejudice—that led us down this potentially misleading path?…

Indeed,  Harvard theoretical physicist and cosmologist Lisa Randall asks, “Does dark matter harbor life?

* Stephen Hawking


As we reach reflexively for a flashlight, we might send particular birthday greetings to Abraham Pais; he was born on this date in 1918.  After earning his Ph.D. in physics in Holland five days before a Nazi deadline banning Jews from receiving degrees, he went into hiding– and worked out ideas in quantum electrodynamics (later shared with Niels Bohr) that became the building blocks of the theory of elemental particles.  He was later a colleague of Robert Oppenheimer and Albert Einstein at the Institute for Advanced Studies at Princeton.

Pais was also an widely-respected historian of science.  Among his many works were a biography of Bohr and (the work for which he’s best remembered as a historian) Subtle Is the Lord: The Science and Life of Albert Einstein, which is considered the definitive Einstein biography.



Written by LW

May 19, 2017 at 1:01 am

“Life could be horrible in the wrong trouser of time”*…


The challenge that the multiverse poses for the idea of an all-good, all-powerful God is often focused on fine-tuning. If there are infinite universes, then we don’t need a fine tuner to explain why the conditions of our universe are perfect for life, so the argument goes. But some kinds of multiverse pose a more direct threat. The many-worlds interpretation of quantum physicist Hugh Everett III and the modal realism of cosmologist Max Tegmark include worlds that no sane, good God would ever tolerate. The theories are very different, but each predicts the existence of worlds filled with horror and misery.

Of course, plenty of thoughtful people argue that the Earth alone contains too much pain and suffering to be the work of a good God. But many others have disagreed, finding fairly nuanced things to say about what might justify God’s creation of a world that includes a planet like ours. For example, there is no forgiveness, courage, or fortitude without at least the perception of wrongs, danger, and difficulty. The most impressive human moral achievements seem to require such obstacles.

Still, many horrifying things happen with nothing seemingly gained from them. And, Everett’s many-worlds and Tegmark’s modal realism both seem to imply that there are huge numbers of horrific universes inhabited solely by such unfortunates. Someone like myself, who remains attracted to the traditional picture of God as loving creator, is bound to find such consequences shocking…

How scientific cosmology puts a new twist on the problem of evil.  A theist wrestles with the implications of the “Many World” hypothesis: “Evil Triumphs in These Multiverses, and God Is Powerless.”

* Terry Pratchett


As we calculate our blessings, we might send carefully-addressed birthday greetings to Infante Henrique of Portugal, Duke of Viseu, better known as Prince Henry the Navigator; he was born on this date in 1394.  A central figure in 15th-century Portuguese politics and in the earliest days of the Portuguese Empire, Henry encouraged Portugal’s expeditions (and colonial conquests) in Africa– and thus is regarded as the main initiator (as a product both of Portugal’s expeditions and of those that they encouraged by example) of what became known as the Age of Discoveries.



“Magnetism, you recall from physics class, is a powerful force that causes certain items to be attracted to refrigerators”*…


Concentric incision on a jar handle from Ramat Rahel, in modern-day Israel

Of all the environmental amenities that this hospitable planet provides, the magnetic field is perhaps the strangest and least appreciated. It has existed for more than three and a half billion years but fluctuates daily. It emanates from Earth’s deep interior but extends far out into space. It is intangible and mostly invisible—except when it lights up in ostentatious greens and reds during the auroras—but essential to life. The magnetic field is our protective bubble; it deflects not only the rapacious solar wind, which could otherwise strip away Earth’s atmosphere over time, but also cosmic rays, which dart in from deep space with enough energy to damage living cells. Although sailors have navigated by the magnetic field for a millennium and scientists have monitored it since the eighteen-thirties, it remains a mysterious beast. Albert Einstein himself said that understanding its origin and persistence was one of the great unsolved problems in physics…

Direct measurements of the magnetic field now span almost two hundred years, and iron-rich volcanic rocks on the ocean floor provide a lower-fidelity chronicle of its erratic behavior—including wholesale reversals in polarity—back about a hundred and fifty million years. But reconstructing the field’s behavior between these two extremes has been difficult. The trick is to find an iron-bearing object that locked in a record of the magnetic field at a well-constrained time in the past, in the way that wine of a given vintage preserves an indirect record of that year’s weather conditions…

Last Monday, in a study published in Proceedings of the National Academy of Sciences, a team of Israeli and American archeologists and geophysicists reports the most detailed reconstruction yet of the magnetic field in pre-instrumental times, using a set of ceramic jars from Iron Age Judea…

In the geophysical community, the tales told by the Judean jars may cause unrest. Both the height and the sharpness of the spike they recount push up against the limits of what some geophysicists think Earth’s outer core is capable of doing. If the eighth-century-B.C. geomagnetic jeté is real, models for the generation of the magnetic field need significant revision. Given the importance of a stable magnetic field to our electricity-dependent, communications-obsessed culture, these questions are of more than academic interest…

More on these befuddling fields at “Earth’s mysterious magnetic field, stored in a jar.”

* Dave Barry


As we look for True North, we might send undulating birthday greetings to George Fitzgerald Smoot III; he was born on this date in 1945.  An astrophysicist and cosmologist, Smoot discovered the signature of gravitational waves– ripples in space-time were first predicted by Albert Einstein– in his study of the cosmic microwave (“background”) radiation that originated with the Big Bang.  He won the Nobel Prize in Physics in 2006; three years later he became the second person to run the board on the quiz show Are You Smarter than a 5th Grader?, and took home the $1 million grand prize.



“When the going gets weird, the weird turn pro”*…


An international study claims to have found first observed evidence that our universe is a hologram.

What is the holographic universe idea? It’s not exactly that we are living in some kind of Star Trekky computer simulation. Rather the idea, first proposed in the 1990s by Leonard Susskind and Gerard ‘t Hooft, says that all the information in our 3-dimensional reality may actually be included in the 2-dimensional surface of its boundaries. It’s like watching a 3D show on a 2D television…

Just when one thought that things couldn’t get any stranger: “Scientists Find First Observed Evidence That Our Universe May Be a Hologram.”

Pair with this piece on recent experimental confirmation of what Albert Einstein called “spooky action at a distance.”

* Hunter S. Thompson


As we batten down the hatches, we might send shady birthday greetings to Fritz Zwicky; he was born on this date in 1898.  A distinguished astronomer who worked at Cal Tech most of his life, Zwicky is best remembered for being the first to infer the existence of “dark matter“: while examining the Coma galaxy cluster in 1933, he used the virial theorem to deduce the existence of what he then called dunkle Materie. Colleagues knew him as both both a genius and a curmudgeon. One of his favorite insults was to refer to people of whom he didn’t approve as “spherical bastards”– because, he explained, they were bastards no matter which way you looked at them.

[For more on dunkle Materie:Will We Ever Know What Dark Matter Is?“]



Written by LW

February 14, 2017 at 1:01 am

“When physicists say ‘we don’t understand what’s going on here,’ they really, really mean it”*…


Theoretical physicists and cosmologists deal with the biggest questions, like “Why are we here?” “When did the universe begin?” and “How?” Another questions that bugs them, and likely has bugged you, is “What happened before the Big Bang?”

To be perfectly clear, we can’t definitively answer this question—but we can speculate wildly, with the help of theoretical physicist Sean Carroll from the California Institute of Technology. Carroll gave a talk last month at the bi-annual meeting of the American Astronomical Society in Grapevine, Texas, where he walked through several pre-Bang possibilities that would result in a universe like ours…

Consider the options at: “What Was Our Universe Like Before the Big Bang?

* Theoretical physicist Peter Woit, Columbia University


As we scrutinize the singularity, we might spare a thought for E. E. Barnard; he died on this date in 1923. Recognized as a gifted observational astronomer, he is probably best known for his discovery of the high proper motion of Barnard’s Star in 1916, which is named in his honor.  But, drawing on his experience as a photographer’s assistant in his adolescence (and building on the work of John William Draper), Barnard also contributed mightily to the development of celestial photography.



Written by LW

February 6, 2017 at 1:01 am

“The past is never dead. It’s not even past”*…


Science has a habit of asking stupid questions. Stupid, that is, by the standards of common sense. But time and time again we have found that common sense is a poor guide to what really goes on in the world.

So if your response to the question “Why does time always go forwards, not backwards?” is that this is a daft thing to ask, just be patient…

In our experience the past is the past and the future is the future, but sometimes the two can cross over; and while the past seems set in stone, some scientists believe that the future can change it:  “The quantum origin of time.”

* William Faulkner, Requiem for a Nun


As we head down the rabbit hole, we might spare a thought for Jules Henri Poincaré; he died on this date in 1912.  A mathematician, theoretical physicist, engineer, and a philosopher of science, Poincaré is considered the “last Universalist” in math– the last mathematician to excel in all fields of the discipline as it existed during his lifetime.

Poincaré was a co-discoverer (with Einstein and Lorentz) of the special theory of relativity; he laid the foundations for the fields of topology and chaos theory; and he had a huge impact on cosmogony.  His famous “Conjecture” held that if any loop in a given three-dimensional space can be shrunk to a point, the space is equivalent to a sphere; it remained unsolved until Grigori Perelman completed a proof in 2003.


Written by LW

July 17, 2016 at 1:01 am

“I used to think information was destroyed in black holes. This was my biggest blunder, or at least my biggest blunder in science”*…


email readers click here for video

Gravitational waves sent out from a pair of colliding black holes have been converted to sound waves, as heard in this animation. On September 14, 2015, LIGO [the Laser Interferometer Gravitational-wave Observatory] observed gravitational waves from the merger of two black holes, each about 30 times the mass of our sun. The incredibly powerful event, which released 50 times more energy than all the stars in the observable universe, lasted only fractions of a second.

In the first two runs of the animation, the sound-wave frequencies exactly match the frequencies of the gravitational waves. The second two runs of the animation play the sounds again at higher frequencies that better fit the human hearing range. The animation ends by playing the original frequencies again twice.

As the black holes spiral closer and closer in together, the frequency of the gravitational waves increases. Scientists call these sounds “chirps,” because some events that generate gravitation waves would sound like a bird’s chirp.

More background from LIGO:

email readers click here for video

* Stephen Hawking


As we scan the event horizon, we might send difficult-to-detect birthday greetings to Lawrence Maxwell Krauss; he was born on this date in 1954.  A theoretical physicist and cosmologist, Dr. Krauss was among the first to propose the existence of the enigmatic dark energy that makes up most of the mass and energy in the universe.  He directs the Origins Project, and has written several books on science for the general public, including Fear of Physics (1993), The Physics of Star Trek (1995), Quantum Man: Richard Feynman’s Life in Science (2011), and A Universe from Nothing (2012).



Written by LW

May 27, 2016 at 1:01 am

%d bloggers like this: