(Roughly) Daily

Posts Tagged ‘consciousness

“The brain is a wonderful organ; it starts working the moment you get up in the morning and does not stop until you get into the office”*…

For as long as humans have thought, humans have thought about thinking. George Cave on the power and the limits of the metaphors we’ve used to do that…

For thousands of years, humans have described their understanding of intelligence with engineering metaphors. In the 3rd century BCE, the invention of hydraulics popularized the model of fluid flow (“humours”) in the body. This lasted until the 1500s, supplanted by the invention of automata and the idea of humans as complex machines. From electrical and chemical metaphors in the 1700s to advances in communications a century later, each metaphor reflected the most advanced thinking of that era. Today is no different: we talk of brains that store, process and retrieve memories, mirroring the language of computers.

I’ve always believed metaphors to be helpful and productive in communicating unfamiliar concepts. But this fascinating history of cognitive science metaphors shows that flawed metaphors can take hold and limit the scope for alternative ideas. In the worst case, the EU spent 10 years and $1.3 billion building a model of the brain based on the incorrect belief that the brain functions like a computer…

Thinking about thinking, from @George_Cave in @the_prepared.

Apposite: “Finding Language in the Brain.”

* Robert Frost

###

As we cogitate on cognition, we might send carefully-computed birthday greetings to Grace Brewster Murray Hopper.  A seminal computer scientist and Rear Admiral in the U.S. Navy, “Amazing Grace” (as she was known to many in her field) was one of the first programmers of the Harvard Mark I computer (in 1944), invented the first compiler for a computer programming language, and was one of the leaders in popularizing the concept of machine-independent programming languages– which led to the development of COBOL, one of the first high-level programming languages.

Hopper also (inadvertently) contributed one of the most ubiquitous metaphors in computer science: she found and documented the first computer “bug” (in 1947).

She has both a ship (the guided-missile destroyer USS Hopper) and a super-computer (the Cray XE6 “Hopper” at NERSC) named in her honor.

 source

Written by (Roughly) Daily

December 9, 2022 at 1:00 am

“Consciousness cannot be accounted for in physical terms. For consciousness is absolutely fundamental. It cannot be accounted for in terms of anything else.”*…

Representation of consciousness from the seventeenth century by Robert Fludd, an English Paracelsian physician (source)

… but that doesn’t mean that we won’t attempt to answer “the hard problem of consciousness.” Indeed, as Elizabeth Fernandez notes, some scientists are using Schrödinger’s own work to try…

Supercomputers can beat us at chess and perform more calculations per second than the human brain. But there are other tasks our brains perform routinely that computers simply cannot match — interpreting events and situations and using imagination, creativity, and problem-solving skills. Our brains are amazingly powerful computers, using not just neurons but the connections between the neurons to process and interpret information.

And then there is consciousness, neuroscience’s giant question mark. What causes it? How does it arise from a jumbled mass of neurons and synapses? After all, these may be enormously complex, but we are still talking about a wet bag of molecules and electrical impulses.

Some scientists suspect that quantum processes, including entanglement, might help us explain the brain’s enormous power, and its ability to generate consciousness. Recently, scientists at Trinity College Dublin, using a technique to test for quantum gravity, suggested that entanglement may be at work within our brains. If their results are confirmed, they could be a big step toward understanding how our brain, including consciousness, works… 

More on why maybe the brain isn’t “classical” after all: “Brain experiment suggests that consciousness relies on quantum entanglement,” from @SparkDialog in @bigthink.

For an orthogonal view: “Why we need to figure out a theory of consciousness.”

* Erwin Schrödinger

###

As we think about thinking, we might spare a thought for Alexius Meinong; he died on this date in 1920. A philosopher, he is known for his unique ontology and for contributions to the philosophy of mind and axiology– the theory of value.

Meinong’s ontology is notable for its belief in nonexistent objects. He distinguished several levels of reality among objects and facts about them: existent objects participate in actual (true) facts about the world; subsistent (real but non-existent) objects appear in possible (but false) facts; and objects that neither exist nor subsist can only belong to impossible facts. See his Gegenstandstheorie, or the Theory of Abstract Objects.

source

“It takes something more than intelligence to act intelligently”*…

AI isn’t human, but that doesn’t mean, Nathan Gardels argues (citing three recent essays in Noema, the magazine that he edits), that it cannot be intelligent…

As the authors point out, “the dominant technique in contemporary AI is deep learning (DL) neural networks, massive self-learning algorithms which excel at discerning and utilizing patterns in data.”

Critics of this approach argue that its “insurmountable wall” is “symbolic reasoning, the capacity to manipulate symbols in the ways familiar from algebra or logic. As we learned as children, solving math problems involves a step-by-step manipulation of symbols according to strict rules (e.g., multiply the furthest right column, carry the extra value to the column to the left, etc.).”

Such reasoning would enable logical inferences that can apply what has been learned to unprogrammed contingencies, thus “completing patterns” by connecting the dots. LeCun and Browning argue that, as with the evolution of the human mind itself, in time and with manifold experiences, this ability may emerge as well from the neural networks of intelligent machines.

“Contemporary large language models — such as GPT-3 and LaMDA — show the potential of this approach,” they contend. “They are capable of impressive abilities to manipulate symbols, displaying some level of common-sense reasoning, compositionality, multilingual competency, some logical and mathematical abilities, and even creepy capacities to mimic the dead. If you’re inclined to take symbolic reasoning as coming in degrees, this is incredibly exciting.”

The philosopher Charles Taylor associates the breakthroughs of consciousness in that era with the arrival of written language. In his view, access to the stored memories of this first cloud technology enabled the interiority of sustained reflection from which symbolic competencies evolved.

This “transcendence” beyond oral narrative myth narrowly grounded in one’s own immediate circumstance and experience gave rise to what the sociologist Robert Bellah called “theoretic culture” — a mental organization of the world at large into the abstraction of symbols. The universalization of abstraction, in turn and over a long period of time, enabled the emergence of systems of thought ranging from monotheistic religions to the scientific reasoning of the Enlightenment.

Not unlike the transition from oral to written culture, might AI be the midwife to the next step of evolution? As has been written in this column before, we have only become aware of climate change through planetary computation that abstractly models the Earthly organism beyond what any of us could conceive out of our own un-encompassing knowledge or direct experience.

For Bratton and Agüera y Arcas, it comes down in the end to language as the “cognitive infrastructure” that can comprehend patterns, referential context and the relationality among them when facing novel events.

“There are already many kinds of languages. There are internal languages that may be unrelated to external communication. There are bird songs, musical scores and mathematical notation, none of which have the same kinds of correspondences to real-world referents,” they observe.

As an “executable” translation of human language, code does not produce the same kind of intelligence that emerges from human consciousness, but is intelligence nonetheless. What is most likely to emerge in their view is not “artificial” intelligence when machines become more human, but “synthetic” intelligence, which fuses both.

As AI further develops through human prompt or a capacity to guide its own evolution by acquiring a sense of itself in the world, what is clear is that it is well on the way to taking its place alongside, perhaps conjoining and becoming synthesized with, other intelligences, from homo sapiens to insects to forests to the planetary organism itself…

AI takes its place among and may conjoin with other multiple intelligences: “Cognizant Machines: A What Is Not A Who.” Eminentl worth reading in full both the linked essay and the articles referenced in it.

* Dostoyevsky, Crime and Punishment

###

As we make room for company, we might recall that it was on this date in 1911 that a telegraph operator in the 7th floor of The New York Times headquarters in Times Square sent a message– “This message sent around the world”– that left at 7:00p, traveled over 28,000 miles, and was relayed by 16 different operators. It arrived back at the Times only 16.5 minutes later.

The “around the world telegraphy” record had been set in 1903, when President Roosevelt celebrated the completion of the Commercial Pacific Cable by sending the first round-the-world message in just 9 minutes. But that message had been given priority status; the Times wanted to see how long a regular message would take — and what route it would follow.

The building from which the message originated is now called One Times Square and is best known as the site of the New Year’s Eve ball drop.

source

Written by (Roughly) Daily

August 20, 2022 at 1:00 am

“The past, like the future, is indefinite and exists only as a spectrum of possibilities”*…

A recent paper by Robert Lanza and others suggests that physical reality isn’t independent of us, “objective,” but is the product of networks of observers…

Is there physical reality that is independent of us? Does objective reality exist at all? Or is the structure of everything, including time and space, created by the perceptions of those observing it? Such is the groundbreaking assertion of a new paper published in the Journal of Cosmology and Astroparticle Physics.

The paper’s authors include Robert Lanza, a stem cell and regenerative medicine expert, famous for the theory of biocentrism, which argues that consciousness is the driving force for the existence of the universe. He believes that the physical world that we perceive is not something that’s separate from us but rather created by our minds as we observe it. According to his biocentric view, space and time are a byproduct of the “whirl of information” in our head that is weaved together by our mind into a coherent experience.

His new paper, co-authored by Dmitriy Podolskiy and Andrei Barvinsky, theorists in quantum gravity and quantum cosmology, shows how observers influence the structure of our reality.

According to Lanza and his colleagues, observers can dramatically affect “the behavior of observable quantities” both at microscopic and massive spatiotemporal scales. In fact, a “profound shift in our ordinary everyday worldview” is necessary, wrote Lanza in an interview with Big Think. The world is not something that is formed outside of us, simply existing on its own. “Observers ultimately define the structure of physical reality itself,” he stated.

How does this work? Lanza contends that a network of observers is necessary and is “inherent to the structure of reality.” As he explains, observers — you, me, and anyone else — live in a quantum gravitational universe and come up with “a globally agreed-upon cognitive model” of reality by exchanging information about the properties of spacetime. “For, once you measure something,” Lanza writes, “the wave of probability to measure the same value of the already probed physical quantity becomes ‘localized’ or simply ‘collapses.’” That’s how reality comes to be consistently real to us all. Once you keep measuring a quantity over and over, knowing the result of the first measurement, you will see the outcome to be the same.

“Similarly, if you learn from somebody about the outcomes of their measurements of a physical quantity, your measurements and those of other observers influence each other ‒ freezing the reality according to that consensus,” added Lanza, explaining further that “a consensus of different opinions regarding the structure of reality defines its very form, shaping the underlying quantum foam,” explained Lanza.

In quantum terms, an observer influences reality through decoherence, which provides the framework for collapsing waves of probability, “largely localized in the vicinity of the cognitive model which the observer builds in their mind throughout their lifespan,” he added.

Lanza says, “The observer is the first cause, the vital force that collapses not only the present, but the cascade of spatiotemporal events we call the past. Stephen Hawking was right when he said: ‘The past, like the future, is indefinite and exists only as a spectrum of possibilities.’”

Could an artificially intelligent entity without consciousness be dreaming up our world? Lanza believes biology plays an important role, as he explains in his book The Grand Biocentric Design: How Life Creates Reality, which he co-authored with the physicist Matej Pavsic.

While a bot could conceivably be an observer, Lanza thinks a conscious living entity with the capacity for memory is necessary to establish the arrow of time. “‘A brainless’ observer does not experience time and/or decoherence with any degree of freedom,” writes Lanza. This leads to the cause and effect relationships we can notice around us. Lanza thinks that “we can only say for sure that a conscious observer does indeed collapse a quantum wave function.”…

Another key aspect of their work is that it resolves “the exasperating incompatibility between quantum mechanics and general relativity,” which was a sticking point even for Albert Einstein.

The seeming incongruity of these two explanations of our physical world — with quantum mechanics looking at the molecular and subatomic levels and general relativity at the interactions between massive cosmic structures like galaxies and black holes — disappears once the properties of observers are taken into account.

While this all may sound speculative, Lanza says their ideas are being tested using Monte Carlo simulations on powerful MIT computer clusters and will soon be tested experimentally.

Is the physical universe independent from us, or is it created by our minds? “Is human consciousness creating reality?@RobertLanza

We might wonder, if this is so, how reality emerged at all. Perhaps one possibility is implied in “Consciousness was upon him before he could get out of the way.”

* Stephen Hawking

###

As we conjure with consciousness, we might recall that it was on this date in 1908 (the same year that he was awarded the Nobel Prize in Physics) that Ernest Rutherford announced in London that he had isolated a single atom of matter. The following year, he, Hans Geiger (later of “counter” fame), and Ernest Marsden conducted the “Gold Foil Experiment,” the results of which replaced J. J. Thomson‘s “Plum Pudding Model” of the atom with what became known as the “Rutherford Model“: a very small charged nucleus, containing much of the atom’s mass, orbited by low-mass electrons.

source

“Attend to mushrooms and all other things will answer up”*…

Travis Boyer: Crush Blue, 2020

The living– and conscious?– infrastructure of the biosphere…

Imagine that you are afloat on your back in the sea. You have some sense of its vast, unknowable depths—worlds of life are surely darting about beneath you. Now imagine lying in a field, or on the forest floor. The same applies, though we rarely think of it: the dirt beneath you, whether a mile or a foot deep, is teeming with more organisms than researchers can quantify. Their best guess is that there are as many as one billion microbes in a single teaspoon of soil. Plant roots plunge and swerve like superhighways with an infinite number of on-ramps. And everywhere there are probing fungi.

Fungi are classified as their own kingdom, separate from plants and animals. They are often microscopic and reside mostly out of sight—mainly underground—but as Merlin Sheldrake writes in Entangled Life: How Fungi Make Our Worlds, Change Our Minds and Shape Our Futures, they support and sustain nearly all living systems. Fungi are nature’s premiere destroyers and creators, digesting the world’s dead and leaving behind new soil. When millions of hair-like fungal threads—called hyphae—coalesce, felting themselves into complex shapes, they emerge from the ground as mushrooms. A mushroom is to a fungus as a pear is to a pear tree: the organism’s fruiting body, with spores instead of seeds. Mushrooms disperse spores by elaborate means: some species generate puffs of air to send them aloft, while others eject them by means of tiny, specialized catapults so they accelerate ten thousand times faster than a space shuttle during launch.

But Sheldrake is most interested in fungi’s other wonders—specifically, how they challenge our understanding of nonhuman intelligence and stretch the notion of biological individuality. Fungi infiltrate the roots of almost every plant, determining so much about its life that researchers are now asking whether plants can be considered plants without them. They are similarly interwoven throughout the human body, busily performing functions necessary to our health and well-being or, depending on the fungi’s species and lifestyle, wreaking havoc. All of this prompts doubts about what we thought we knew to be the boundaries between one organism and another…

ungi themselves form large networks of hyphae strands in order to feed. These strands, when massed together, are called mycelium. The total length of mycelium threaded through the globe’s uppermost four inches of soil is believed to be enough to span half the width of our galaxy. Mycelium is constantly moving, probing its surroundings in every direction and coordinating its movements over long distances. When food is found—a nice chunk of rotting wood, for example—disparate parts of the mycelium redirect to coalesce around it, excrete enzymes that digest it externally, and then absorb it. As Sheldrake puts it, “The difference between animals and fungi is simple: Animals put food in their bodies, whereas fungi put their bodies in the food.”

Fungi are literally woven into the roots and bodies of nearly every plant grown in natural conditions. “A plant’s fungal partners,” Sheldrake writes, “can have a noticeable impact on its growth.” In one striking example, he describes an experiment in which strawberries grown with different fungal partners changed their sweetness and shape. Bumblebees seemed able to discern the difference and were more attracted to the flowers of strawberry plants grown with certain fungal species. Elsewhere he discusses an experiment in which researchers took fungi that inhabited the roots of a species of coastal grass that grew readily in saltwater and added it to a dry-land grass that could not tolerate the sea. Suddenly the dry-land grass did just fine in brine.

Much has been written lately about trees communicating and sharing resources among themselves; healthy trees have been documented moving resources toward trees that have fallen ill. This is often characterized as friendship or altruism between trees, but it is not at all clear whether trees pass information or nutrients intentionally. What is clear, though, is that the fungal networks entwined in every tree root make this communication possible. “Why might it benefit a fungus to pass a warning between the multiple plants that it lives with?” Sheldrake asks. The answer is survival. “If a fungus is connected to several plants and one is attacked by aphids, the fungus will suffer as well as the plant,” he writes. “It is the fungus that stands to benefit from keeping the healthy plant alive.”…

Fungi are genetically closer to animals than to plants, and similar enough to humans at the molecular level that we benefit from many of their biochemical innovations. In fact, many of our pharmaceuticals are borrowed innovations from fungi. Penicillin, discovered in 1928 by the Scottish researcher Alexander Fleming, is a compound produced by fungus for protection against bacterial infection. The anti-cancer drug Taxol was originally isolated from the fungi that live inside yew trees. More than half of all enzymes used in industry are generated by fungi, Sheldrake notes, and 15 percent of all vaccines are produced using yeast. We are, as he puts it, “borrowing a fungal solution and rehousing it within our own bodies.”..

We know that fungi maintain “countless channels of chemical communication with other organisms,” and that they are constantly processing diverse information about their environment. Some can recognize color, thanks to receptors sensitive to blue and red light, though it is not entirely clear what they do with that information. Some even have opsins, light-detecting proteins also found within the rods and cones of the animal eye. One fungus, Phycomyces blakesleeanus, has a sensitivity to light similar to that of a human eye and can “detect light at levels as low as that provided by a single star” to help it decide where to grow. It is also able to sense the presence of nearby objects and will bend away from them before ever making contact. Still other fungi recognize texture; according to Sheldrake, the bean rust fungus has been demonstrated to detect grooves in artificial surfaces “three times shallower than the gap between the laser tracks on a CD.”

Can fungi, then, be said to have a mind of their own? That is, as Sheldrake puts it, a “question of taste”—there is no settled scientific definition for “intelligence,” not even for animals. The Latin root of the word means “to choose between,” an action fungi clearly do all the time. But the application of this kind of term to fungi is loaded with something more mystical than that simple definition and demands a willingness to rattle our sense of where we ourselves fall in the imagined hierarchy of life. If fungi can be said to think, it is a form of cognition so utterly different that we strain to see it.

After all, philosophers of mind like Daniel Dennett argue that drawing any neat line between nonhumans and humans with “real minds” is an “archaic myth.” Our brains evolved from nonmental material. “Brains are just one such network,” Sheldrake writes, “one way of processing information.” We still don’t know how the excitement of brain cells gives rise to experience. Can we really dismiss the possibility of cognition in an organism that clearly adapts, learns, and makes decisions simply based on the lack of a brain structure analogous to ours?

Perhaps there is intelligent life all around us, and our view is too human-centric to notice. Are fungi intelligent? Sheldrake reserves judgment, deferring instead to scientific mystery: “A sophisticated understanding of mycelium is yet to emerge.” Still, after spending long enough in the atmosphere of Sheldrake’s sporulating mind, I began to adopt the fungal perspective. I can’t help now but see something like a mind wherever there might be fungal threads—which is to say everywhere, a mesh-like entangled whole, all over the earth.

Fungi challenge our understanding of nonhuman intelligence and complicate the boundaries between one organism and another: “Our Silent Partners“– Zoë Schlanger (@zoeschlanger) reviewing Merlin Sheldrake’s Entangled Life: How Fungi Make Our Worlds, Change Our Minds and Shape Our Futures in @nybooks.

Why did the mushroom go to the party? Because he was a fungi.” – Lewis Tomlinson

* A. R. Ammons

###

As we ponder partnership, we might spare a thought for Jens Wilhelm August Lind; he died on this date in 1939. An apothecary, botanist and mycologist, he published a full account of all fungi collected in Denmark by his teacher, Emil Rostrup. Combining his pharmaceutical and mycological knowledge, he was early in experimenting with chemical control of plant pathogens.

Lind also collaborated with Knud Jessen on an account on the immigration history of weeds to Denmark.

Gravestone of Jens Lind and wife Gunild, at Viborg Cemetery

source

%d bloggers like this: