(Roughly) Daily

Posts Tagged ‘computing

“A classical computation is like a solo voice—one line of pure tones succeeding each other. A quantum computation is like a symphony—many lines of tones interfering with one another.”*…

 

abstractions-a-419

 

Quantum computers will never fully replace “classical” ones like the device you’re reading this article on. They won’t run web browsers, help with your taxes, or stream the latest video from Netflix.

What they will do—what’s long been hoped for, at least—will be to offer a fundamentally different way of performing certain calculations. They’ll be able to solve problems that would take a fast classical computer billions of years to perform. They’ll enable the simulation of complex quantum systems such as biological molecules, or offer a way to factor incredibly large numbers, thereby breaking long-standing forms of encryption.

The threshold where quantum computers cross from being interesting research projects to doing things that no classical computer can do is called “quantum supremacy.” Many people believe that Google’s quantum computing project will achieve it later this year…

Researchers are getting close to building a quantum computer that can perform tasks a classical computer can’t. Here’s what the milestone will mean: “Quantum Supremacy Is Coming: Here’s What You Should Know.”

* Seth Lloyd, Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos

###

As we get weird, we might recall that it was on this date in 2012 that Ohioan Beth Johnson attempted to break a record that has been set in on this same date 1999 by a group of English college students– for the largest working yoyo in the world.  The British yoyo was 10 feet in diameter; hers, 11 feet, 9 inches.  (It weighed 4,620 lbs.)  Her attempt on this date failed, as did another.  But finally, in September, 2012, she was able successfully to deploy it from a crane in Cincinnati… and earn her way into the Guinness Book of World Records

ss-140909-guinness-08.fit-660w

Beth Johnson and her record-setting creation

source

 

“One of the things I did not understand, was that these systems can be used to manipulate public opinion in ways that are quite inconsistent with what we think of as democracy”*…

 

bk_134_howard_rheingold

Nineteen years ago, in his third annual call for answers to an Annual Question, John Brockman asked members of the Edge community what they believed to be “today’s [2000’s] most important unreported story.” The remarkable Howard Rheingold (@hrheingold) answered in a way that has turned out to be painfully prophetic…

The way we learn to use the Internet in the next few years (or fail to learn) will influence the way our grandchildren govern themselves. Yet only a tiny fraction of the news stories about the impact of the Net focus attention on the ways many to-many communication technology might be changing democracy — and those few stories that are published center on how traditional political parties are using the Web, not on how grassroots movements might be finding a voice…

Every communication technology alters governance and political processes. Candidates and issues are packaged and sold on television by the very same professionals who package and sell other commodities. In the age of mass media, the amount of money a candidate can spend on television advertising is the single most important influence on the electoral success. Now that the Internet has transformed every desktop into a printing press, broadcasting station, and place of assembly, will enough people learn to make use of this potential? Or will our lack of news, information, and understanding of the Net as a political tool prove insufficient against the centralization of capital, power, and knowledge that modern media also make possible?…

The political power afforded to citizens by the Web is not a technology issue. Technology makes a great democratization of publishing, journalism, public discourse possible, but does not determine whether or not that potential will be realized. Every computer connected to the Net can publish a manifesto, broadcast audio and video eyewitness reports of events in real time, host a virtual community where people argue about those manifestos and broadcasts. Will only the cranks, the enthusiasts, the fringe groups take advantage of this communication platform? Or will many-to-many communication skills become a broader literacy, the way knowing and arguing about the issues of the day in print was the literacy necessary for the American revolution?…

The Scylla and Charybdis of which Howard warned– centralization-by-capital/political power and atomization-into-cacophony (whether via the pollution of manipulation/”fake news” or simple tribalism)– is now all too apparent… even if it’s not at all clear how we sail safely between them.  It’s almost 20 years later– but not too late to heed Howard’s call, which you can read in full at “How Will The Internet Influence Democracy?

* Eric Schmidt, Executive Chairman of Google [as Howard’s 2000 insight dawns on him in 2017, source]

###

As we try harder, we might recall that it was on this date in 1911 that financier and “Father of Trusts” Charles R. Flint incorporated The Computing-Tabulating-Recording Company as a holding company into which he rolled up manufacturers of record-keeping and measuring systems: Bundy Manufacturing Company, International Time Recording Company, The Tabulating Machine Company, and the Computing Scale Company of America.

Four years later Flint hired Thomas J. Watson, Sr. to run the company; nine years after that, in 1924, Watson organized the formerly disparate units into a single operating company, which he named “International Business Machines,” or as we now know it, IBM.

150px-CTR_Company_Logo source

 

 

“Big Data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it”*…

 

a-day-in-data-1200

 

You’ve probably heard of kilobytes, megabytes, gigabytes, or even terabytes.

These data units are common everyday amounts that the average person may run into. Units this size may be big enough to quantify the amount of data sent in an email attachment, or the data stored on a hard drive, for example.

In the coming years, however, these common units will begin to seem more quaint – that’s because the entire digital universe is expected to reach 44 zettabytes by 2020.

If this number is correct, it will mean there are 40 times more bytes than there are stars in the observable universe…

The stuff of dreams, the stuff of nightmares: “How Much Data is Generated Each Day?

* Dan Ariely

###

As we revel in really, really big numbers, we might spare a thought for Edgar Frank “Ted” Codd; he died on this date in 2003.  A distinguished computer scientist who did important work on cellular automata, he is best remembered as the father of computer databases– as the person who laid the foundation for for relational databases, for storing and retrieving information in computer records.

150px-Edgar_F_Coddsource

 

Written by LW

April 18, 2019 at 1:01 am

“It is likely that libraries will carry on and survive, as long as we persist in lending words to the world that surrounds us, and storing them for future readers”*…

 

library

 

Many visions of the future lie buried in the past. One such future was outlined by the American librarian Charles Ammi Cutter in his essay “The Buffalo Public Library in 1983”, written a century before in 1883.

Cutter’s fantasy, at times dry and descriptive, is also wonderfully precise:

The [library], when complete, was to consist of two parts, the first a central store, 150 feet square, a compact mass of shelves and passageways, lighted from the ends, but neither from sides nor top; the second an outer rim of rooms 20 feet wide, lighted from the four streets. In front and rear the rim was to contain special libraries, reading-rooms, and work-rooms; on the sides, the art-galleries. The central portion was a gridiron of stacks, running from front to rear, each stack 2 feet wide, and separated from its neighbor by a passage of 3 feet. Horizontally, the stack was divided by floors into 8 stories, each 8 feet high, giving a little over 7 feet of shelf-room, the highest shelf being so low that no book was beyond the reach of the hand. Each reading-room, 16 feet high, corresponded to two stories of the stack, from which it was separated in winter by glass doors.

The imagined structure allows for a vast accumulation of books:

We have now room for over 500,000 volumes in connection with each of the four reading-rooms, or 4,000,000 for the whole building when completed.

If his vision for Buffalo Public Library might be considered fairly modest from a technological point of view, when casting his net a little wider to consider a future National Library, one which “can afford any luxury”, things get a little more inventive.

[T]hey have an arrangement that brings your book from the shelf to your desk. You have only to touch the keys that correspond to the letters of the book-mark, adding the number of your desk, and the book is taken off the shelf by a pair of nippers and laid in a little car, which immediately finds its way to you. The whole thing is automatic and very ingenious…

But for Buffalo book delivery is a cheaper, simpler, and perhaps less noisy, affair.

…for my part I much prefer our pages with their smart uniforms and noiseless steps. They wear slippers, the passages are all covered with a noiseless and dustless covering, they go the length of the hall in a passage-way screened off from the desk-room so that they are seen only when they leave the stack to cross the hall towards any desk. As that is only 20 feet wide, the interruption to study is nothing.

Cutter’s fantasy might appear fairly mundane, born out of the fairly (stereo)typical neuroses of a librarian: in the prevention of all noise (through the wearing of slippers), the halting of the spread of illness (through good ventilation), and the disorder of the collection (through technological innovations)…

Far from a wild utopian dream, today Cutter’s library of the future appears basic: there will be books and there will be clean air and there will be good lighting. One wonders what Cutter might make of the library today, in which the most basic dream remains perhaps the most radical: for them to remain in our lives, free and open, clean and bright.

More at the original, in Public Domain Review: “The Library of the Future: A Vision of 1983 from 1883.”  Read Cutter’s essay in its original at the Internet Archive.

Pair with “Libraries of the future are going to change in some unexpected ways,” in which IFTF Research Director (and Boing Boing co-founder) David Pescovitz describes a very different future from Cutter’s, and from which the image above was sourced.

* Alberto Manguel, The Library at Night

###

As we browse in bliss, we might recall that it was on this date in 1946 that the most famous early computer– the ENIAC (Electronic Numerical Integrator And Computer)– was dedicated.  The first general-purpose computer (Turing-complete, digital, and capable of being programmed and re-programmed to solve different problems), ENIAC was begun in 1943, as part of the U.S’s war effort (as a classified military project known as “Project PX”); it was conceived and designed by John Mauchly and Presper Eckert of the University of Pennsylvania, where it was built.  The finished machine, composed of 17,468 electronic vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors and around 5 million hand-soldered joints, weighed more than 27 tons and occupied a 30 x 50 foot room– in its time the largest single electronic apparatus in the world.  ENIAC’s basic clock speed was 100,000 cycles per second. Today’s home computers have clock speeds of 1,000,000,000 cycles per second.

 source

 

Written by LW

February 16, 2019 at 1:01 am

“The laws of nature are but the mathematical thoughts of God”*…

 

euclid

2,300 years ago, Euclid of Alexandria sat with a reed pen–a humble, sliced stalk of grass–and wrote down the foundational laws that we’ve come to call geometry. Now his beautiful work is available for the first time as an interactive website.

Euclid’s Elements was first published in 300 B.C. as a compilation of the foundational geometrical proofs established by the ancient Greek. It became the world’s oldest, continuously used mathematical textbook. Then in 1847, mathematician Oliver Byrne rereleased the text with a new, watershed use of graphics. While Euclid’s version had basic sketches, Byrne reimagined the proofs in a modernist, graphic language based upon the three primary colors to keep it all straight. Byrne’s use of color made his book expensive to reproduce and therefore scarce, but Byrne’s edition has been recognized as an important piece of data visualization history all the same…

Explore elemental beauty at “A masterpiece of ancient data viz, reinvented as a gorgeous website.”

* Euclid, Elements

###

As we appreciate the angles, we might spare a thought for Kurt Friedrich Gödel; he died on this date in 1978.  A  logician, mathematician, and philosopher, he is considered (along with Aristotle, Alfred Tarski— whose birthday this also is– and Gottlob Frege) to be one of the most important logicians in history.  Gödel had an immense impact upon scientific and philosophical thinking in the 20th century.  He is, perhaps, best remembered for his Incompleteness Theorems, which led to (among other important results) Alan Turing’s insights into computational theory.

Kurt Gödel’s achievement in modern logic is singular and monumental – indeed it is more than a monument, it is a landmark which will remain visible far in space and time. … The subject of logic has certainly completely changed its nature and possibilities with Gödel’s achievement.                  — John von Neumann

kurt_gödel source

 

Written by LW

January 14, 2019 at 1:01 am

“As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.”*…

 

quantum computing

Quantum computing is all the rage. It seems like hardly a day goes by without some news outlet describing the extraordinary things this technology promises. Most commentators forget, or just gloss over, the fact that people have been working on quantum computing for decades—and without any practical results to show for it.

We’ve been told that quantum computers could “provide breakthroughs in many disciplines, including materials and drug discovery, the optimization of complex manmade systems, and artificial intelligence.” We’ve been assured that quantum computers will “forever alter our economic, industrial, academic, and societal landscape.” We’ve even been told that “the encryption that protects the world’s most sensitive data may soon be broken” by quantum computers. It has gotten to the point where many researchers in various fields of physics feel obliged to justify whatever work they are doing by claiming that it has some relevance to quantum computing.

Meanwhile, government research agencies, academic departments (many of them funded by government agencies), and corporate laboratories are spending billions of dollars a year developing quantum computers. On Wall Street, Morgan Stanley and other financial giants expect quantum computing to mature soon and are keen to figure out how this technology can help them.

It’s become something of a self-perpetuating arms race, with many organizations seemingly staying in the race if only to avoid being left behind. Some of the world’s top technical talent, at places like Google, IBM, and Microsoft, are working hard, and with lavish resources in state-of-the-art laboratories, to realize their vision of a quantum-computing future.

In light of all this, it’s natural to wonder: When will useful quantum computers be constructed? The most optimistic experts estimate it will take 5 to 10 years. More cautious ones predict 20 to 30 years. (Similar predictions have been voiced, by the way, for the last 20 years.) I belong to a tiny minority that answers, “Not in the foreseeable future.” Having spent decades conducting research in quantum and condensed-matter physics, I’ve developed my very pessimistic view. It’s based on an understanding of the gargantuan technical challenges that would have to be overcome to ever make quantum computing work…

Michel Dyakonov makes “The Case Against Quantum Computing.”

* Albert Einstein

###

As we feel the need for speed, we might recall that it was on this date in 1942 that a team of scientists led by Enrico Fermi, working inside an enormous tent on a squash court under the stands of the University of Chicago’s Stagg Field, achieved the first controlled nuclear fission chain reaction… laying the foundation for the atomic bomb and later, nuclear power generation.

“…the Italian Navigator has just landed in the New World…”
– Coded telephone message confirming first self-sustaining nuclear chain reaction, December 2, 1942.

Illustration depicting the scene on Dec. 2, 1942 (Photo copyright of Chicago Historical Society)

source

Indeed, exactly 15 years later, on this date in 1957, the world’s first full-scale atomic electric power plant devoted exclusively to peacetime uses, the Shippingport Atomic Power Station, reached criticality; the first power was produced 16 days later, after engineers integrated the generator into the distribution grid of Duquesne Light Company.

 source

 

Written by LW

December 2, 2018 at 1:01 am

“The future is already here – it’s just not evenly distributed”*…

 

future

Security, transportation, energy, personal “stuff”– the 2018 staff of Popular Mechanics, asked leading engineers and futurists for their visions of future cities, and built a handbook to navigate this new world: “The World of 2045.”

* William Gibson (in The Economist, December 4, 2003)

###

As we take the long view, we might spare a thought for Charles Babbage; he died on this date in 1871. A mathematician, philosopher, inventor, and mechanical engineer, Babbage is best remembered for originating the concept of a programmable computer. Anxious to eliminate inaccuracies in mathematical tables, he first built a small calculating machine able to compute squares.  He then produced prototypes of portions of a larger Difference Engine. (Georg and Edvard Schuetz later constructed the first working devices to the same design, and found them successful in limited applications.)  In 1833 he began his programmable Analytical Machine (AKA, the Analytical Engine), the forerunner of modern computers, with coding help from Ada Lovelace, who created an algorithm for the Analytical Machine to calculate a sequence of Bernoulli numbers— for which she is remembered as the first computer programmer.

Babbage’s other inventions include the cowcatcher, the dynamometer, the standard railroad gauge, uniform postal rates, occulting lights for lighthouses, Greenwich time signals, and the heliograph opthalmoscope.  A true hacker, he was also passionate about cyphers and lock-picking.

 source

 

%d bloggers like this: