(Roughly) Daily

Posts Tagged ‘Robert Wilson

“It is well to remember that the entire universe, with one trifling exception, is composed of others”*…

This artist’s impression shows the temperate planet Ross 128 b, with its red dwarf parent star in the background. Credit: ESO/M. Kornmesser

For centuries, scientific discoveries have suggested humanity occupies no privileged place in the universe. But as Mario Livio argues, studies of worlds beyond our solar system could place meaningful new limits on our existential mediocrity…

When the Polish polymath Nicolaus Copernicus proposed in 1543 that the sun, rather than the Earth, was the center of our solar system, he did more than resurrect the “heliocentric” model that had been devised (and largely forgotten) some 18 centuries earlier by the Greek astronomer Aristarchus of Samos. Copernicus—or, rather, the “Copernican principle” that bears his name—tells us that we humans are nothing special. Or, at least, that the planet on which we live is not central to anything outside of us; instead, it’s just another ordinary world revolving around a star.

Our apparent mediocrity has only ascended in the centuries that have passed since Copernicus’s suggestion. In the middle of the 19th century Charles Darwin realized that rather than being the “crown of creation,” humans are simply a natural product of evolution by means of natural selection. Early in the 20th century, astronomer Harlow Shapley deepened our Copernican cosmic demotion, showing that not only the Earth but the whole solar system lacks centrality, residing in the Milky Way’s sleepy outer suburbs rather than the comparatively bustling galactic center. A few years later, astronomer Edwin Hubble showed that galaxies other than the Milky Way exist, and current estimates put the total number of galaxies in the observable universe at a staggering trillion or more.

Since 1995 we have discovered that even within our own Milky Way roughly one of every five sunlike or smaller stars harbors an Earth-size world orbiting in a “Goldilocks” region (neither too hot nor too cold) where liquid water may persist on a rocky planetary surface. This suggests there are at least a few hundred million planets in the Milky Way alone that may in principle be habitable. In roughly the same span of time, observations of the big bang’s afterglow—the cosmic microwave background—have shown that even the ordinary atomic matter that forms planets and people alike constitutes no more than 5 percent of the cosmic mass and energy budget. With each advance in our knowledge, our entire existence retreats from any possible pinnacle, seemingly reduced to flotsam adrift at the universe’s margins.

Believe it or not, the Copernican principle doesn’t even end there. In recent years increasing numbers of physicists and cosmologists have begun to suspect—often against their most fervent hopes—that our entire universe may be but one member of a mind-numbingly huge ensemble of universes: a multiverse.

Interestingly though, if a multiverse truly exists, it also suggests that Copernican cosmic humility can only be taken so far.

The implications of the Copernican principle may sound depressing to anyone who prefers a view of the world regarding humankind as the central or most important element of existence, but notice that every step along the way in extending the Copernican principle represented a major human discovery. That is, each decrease in the sense of our own physical significance was the result of a huge expansion in our knowledge. The Copernican principle teaches us humility, yes, but it also reminds us to keep our curiosity and passion for exploration alive and vibrant…

Fascinating: “How Far Should We Take Our Cosmic Humility?“, from @Mario_Livio in @sciam.

* John Holmes (the poet)

###

As we ponder our place, we might send carefully-observed birthday greetings to Arno Penzias; he was born on this date in 1933. A physicist and radio astronomer, he and Robert Wilson, a collegue at Bell Labs, discovered the cosmic microwave background radiation, which helped establish the Big Bang theory of cosmology– work for which they shared the 1978 Nobel Prize in Physics.

MB radiation is something that anyone old enough to have watched broadcast (that’s to say, pre-cable/streaming) television) has seen:

The way a television works is relatively simple. A powerful electromagnetic wave is transmitted by a tower, where it can be received by a properly sized antenna oriented in the correct direction. That wave has additional signals superimposed atop it, corresponding to audio and visual information that had been encoded. By receiving that information and translating it into the proper format (speakers for producing sound and cathode rays for producing light), we were able to receive and enjoy broadcast programming right in the comfort of our own homes for the first time. Different channels broadcasted at different wavelengths, giving viewers multiple options simply by turning a dial.

Unless, that is, you turned the dial to channel 03.

Channel 03 was — and if you can dig up an old television set, still is — simply a signal that appears to us as “static” or “snow.” That “snow” you see on your television comes from a combination of all sorts of sources:

– human-made radio transmissions,

– the Sun,

– black holes,

– and all sorts of other directional astrophysical phenomena like pulsars, cosmic rays and more.

But if you were able to either block all of those other signals out, or simply took them into account and subtracted them out, a signal would still remain. It would only by about 1% of the total “snow” signal that you see, but there would be no way of removing it. When you watch channel 03, 1% of what you’re watching comes from the Big Bang’s leftover glow. You are literally watching the cosmic microwave background…

This Is How Your Old Television Set Can Prove The Big Bang

“It is unnatural in a large field to have only one shaft of wheat, and in the infinite Universe only one living world”*…

One indication of advanced alien life could be industrial pollution. Therefore, the presence of gases such as nitrogen dioxide might serve as a technosignature that we could detect on exoplanets. (Courtesy: NASA/Jay Freidlander) [source]

NASA’s top scientists have a provocative message for the scientific community: that they need a plan in place for if — or when — we find evidence of extraterrestrial life…

James Green, the agency’s chief scientist, coauthored a new article, published in the journal Nature, urging researchers to create a framework for reporting evidence of aliens. In it, the authors stressed the importance of clearly communicating any findings of extraterrestrial life, as well as establishing clear expectations for the public for when it occurs and accurately expressing ambiguity in early evidence.

“As life-detection objectives become increasingly prominent in space sciences, it is essential to open a community dialogue about how to convey information in a subject matter that is diverse, complicated and has a high potential to be sensationalized,” read the paper.

Green and his co-authors propose a confidence of life detection (CoLD) scale to help evaluate any evidence that might be discovered. The scale itself contains seven different levels like a staircase. Each level is a benchmark that must be met before we can proceed to the next step. 

For example, level one would be discovering life signatures such as biological molecules. The second level would be ruling out that the sign of life is the result of contamination from Earth. Eventually, the CoLD scale ends with the final step: scientists declaring that they’ve confidently discovered evidence of extraterrestrial life. 

“Having a scale like this will help us understand where we are in terms of the search for life in particular locations, and in terms of the capabilities of missions and technologies that help us in that quest,” Green said in a NASA news release

The paper’s authors stress that the scale is merely a starting point for a larger conversation with scientists and science communicators about the best ways to proceed if and when we discover evidence of alien life. 

It also comes in the context of the upcoming launch of the powerful James Webb telescope, along with the Perseverance Mars rover searching for life on the Red Planet, meaning that such a finding might become a reality sooner rather than later. 

“The search for life beyond Earth requires broad participation from the scientific community and many kinds of observations and experiments,” Mary Voltek, co-author of the study and head of NASA’s Astrobiology Program, said in the release. “Together, we can be stronger in our efforts to look for hints that we are not alone.”

NASA Says We Need a Plan for When We Discover Alien Life,” from @futurism.

As to what we’ll do with that knowledge, a complicating factor: “94% of the universe’s galaxies are permanently beyond our reach” (if the speed of light remains an upper limit on travel).

Metrodorus of Chios

###

As we search far and wide, we might send enduring birthday greetings to Sir Hermann Bondi; he was born on this date in 1919. A mathematician and cosmologist, he is best remembered for developing the steady state model of the universe with Fred Hoyle and Thomas Gold as an alternative to the Big Bang theory. In an attempt to explain the paradox: how can the stars continually recede, yet without disappearing, they audaciously proposed an unproven hypothesis: that the universe has an eternal existence, with no beginning and without an end. Further, they argued, the universe is continuously expanding, maintaining a constant density by continually creating new matter from energy. Their model was rendered obsolete when, in 1965, Arno Penzias and Robert Wilson detected a background microwave radiation from all directions in space, as predicted by the “Big Bang” theory of creation that is now accepted. [See here for more on Penzias’ and Wilson’s discovery.)

Bondi also contributed to the theory of general relativity; was the first to analyze the inertial and gravitational interaction of negative mass; and the first to explicate correctly the nature of gravitational waves.

source

Bullet, as yet un-dodged…

Readers may feel a sense of relief now that the Mayan prophecy of doom in 2012 has gone unfulfilled– understandable…  but maybe a bit premature.  As this handy reference from The Economist illustrates…

…while most of the major prophecies on record are past their due dates (the Norse and Nostradamus were canny enough to refrain from specifying exact timings), one apocalyptic alert is still active… and sadly for humankind, it’s from an all-too-august source.

Possibly the greatest and most influential scientist in history, Isaac Newton was also a pious, albeit unorthodox, Christian.  Early in his life, surrounded by the Plague, the Great Fires of London, and assorted other upheavals, Newton decided that the End Times were at hand.  But while Newton realized promptly that he was premature, millennial pronouncements continued from others.  So, in a 1704 manuscript (in which he describes his attempts to extract scientific information from the Bible) he estimated that the world would end no earlier than 2060. He explained: “This I mention not to assert when the time of the end shall be, but to put a stop to the rash conjectures of fanciful men who are frequently predicting the time of the end, and by doing so bring the sacred prophesies into discredit as often as their predictions fail.”

Now, “no earlier than 47 years from now” gives one some time to prepare.

But could it be that even Sir Isaac made mistakes?  So argues David Flynn, author of Temple at the Center of Time: Newton’s Bible Codex Deciphered and the Year 2012.  Flynn revisits Newton’s logic and his calculations, and “corrects” it to find that the threshold for total termination may be much nearer–  indeed, this year– 2013…  Read the story at WND.com, along with “Just the Facts: How Satan Takes ‘Legal Authority’ Over You” and “Obama Staged Sandy Hook Massacre.”

###

As we contain our credulity, we might send cosmic birthday greetings to Robert Woodrow Wilson; he was born on this date in 1936.  An astronomer, Wilson and his Bell Labs partner, physicist Arno Penzias, discovered the cosmic microwave background radiation (CMB) in 1964– a feat that earned them the Nobel Prize (in 1978), as CMB was a critical corroborator of the Big Bang Theory of the origin of the universe.

 source

Written by (Roughly) Daily

January 10, 2013 at 1:01 am

…It tolled for us…

From the folks at Lucent, a nostalgic music video celebrating the contributions of Bell Labs– a facility unique in America history.  The nation’s premier research facility for several decades, it was the hatching ground of radio astronomy, the transistor, the laser, information theory, the UNIX operating system, and the C programming language; work completed there earned six Nobel Prizes.

With the breakup of ATT in 1984, stewardship of the Lab passed to Lucent, and the role of Lab began to change.  By August of 2008, Alcatel-Lucent announced that it was puling out of basic research altogether, to focus exclusively on more immediately marketable applications; the Bell Labs celebrated in the video is gone.

But its gifts to knowledge and society survive.  Indeed, it’s surely fair to observe that, without work done there, it wouldn’t be possible to for your correspondent to be pelting readers with daily missives via the internet.

As we listen to the background noise of the universe (for the discovery of which, Arno Penzias and Robert Wilson of Bell Labs won the 1978 Nobel Prize in Physics), we might take a celebratory trip in honor of Thor Heyerdahl, the Norwegian  explorer and anthropologist who became famous for his Kon-Tiki  Expedition in 1947 (though he went on many others as well); he was born on this date in 1914…  He once responded to an interviewer, “Borders? I have never seen one. But I have heard they exist in the minds of most people.”

Thor Heyerdahl

Reblog this post [with Zemanta]
%d bloggers like this: