(Roughly) Daily

Posts Tagged ‘randomness

“In the space between chaos and shape there was another chance”*…

Prince Hamlet spent a lot of time pondering the nature of chance and probability in William Shakespeare’s tragedy. In the famous “To be or not to be” speech, he notes that we helplessly face “the slings and arrows of outrageous fortune” — though a little earlier in the play he declares that “there’s a special providence in the fall of a sparrow,” suggesting that everything happens because God wills it to be so.

We can hardly fault the prince for holding two seemingly contradictory views about the nature of chance; after all, it is a puzzle that has vexed humankind through the ages. Why are we here? Or to give the question a slightly more modern spin, what sequence of events brought us here, and can we imagine a world in which we didn’t arrive on the scene at all?

It is to biologist Sean B. Carroll’s credit that he’s found a way of taking a puzzle that could easily fill volumes (and probably has filled volumes), and presenting it to us in a slim, non-technical, and fun little book, “A Series of Fortunate Events: Chance and the Making of the Planet, Life, and You.”

Carroll (not to be confused with physicist and writer Sean M. Carroll) gets the ball rolling with an introduction to the key concepts in probability and game theory, but quickly moves on to the issue at the heart of the book: the role of chance in evolution. Here we meet a key historical figure, the 20th-century French biochemist Jacques Monod, who won a Nobel Prize for his work on genetics. Monod understood that genetic mutations play a critical role in evolution, and he was struck by the random nature of those mutations…

Carroll quotes Monod: “Pure chance, absolutely free and blind, at the very root of the stupendous edifice of evolution: This central concept of modern biology is no longer one among other possible or even conceivable hypotheses. It is today the sole conceivable hypothesis, the only one that squares with observed and tested fact.”

“There is no scientific concept, in any of the sciences,” Monod concludes, “more destructive of anthropocentrism than this one.”

From there, it’s a short step to the realization that we humans might never have evolved in the first place…

Preview(opens in a new tab)

The profound impact of randomness in determining destiny: “The Power of Chance in Shaping Life and Evolution.”

See also: “Survival of the Luckiest.”

* Jeanette Winterson, The World and Other Places


As we blow on the dice, we might send carefully-calculated birthday greetings to Gabrielle-Émilie Le Tonnelier de Breteuil, Marquise du Châtelet, the French mathematician and physicist who is probably (if unfairly) better known as Voltaire’s mistress; she was born on this date in 1706.  Fascinated by the work of Newton and Leibniz, she dressed as a man to frequent the cafes where the scientific discussions of the time were held.  Her major work was a translation of Newton’s Principia, for which Voltaire wrote the preface; it was published a decade after her death, and was for many years the only translation of the Principia into French.

Judge me for my own merits, or lack of them, but do not look upon me as a mere appendage to this great general or that great scholar, this star that shines at the court of France or that famed author. I am in my own right a whole person, responsible to myself alone for all that I am, all that I say, all that I do. It may be that there are metaphysicians and philosophers whose learning is greater than mine, although I have not met them. Yet, they are but frail humans, too, and have their faults; so, when I add the sum total of my graces, I confess I am inferior to no one.
– Mme du Châtelet, to Frederick the Great of Prussia


“Real randomness requires an infinite amount of information”*…


If you have ever tossed dice, whether in a board game or at the gambling table, you have created random numbers—a string of numbers each of which cannot be predicted from the preceding ones. People have been making random numbers in this way for millennia. Early Greeks and Romans played games of chance by tossing the heel bone of a sheep or other animal and seeing which of its four straight sides landed uppermost. Heel bones evolved into the familiar cube-shaped dice with pips that still provide random numbers for gaming and gambling today.

But now we also have more sophisticated random number generators, the latest of which required a lab full of laser equipment at the U.S. National Institute of Standards and Technology (NIST) in Boulder, CO. It relies on counterintuitive quantum behavior with an assist from relativity theory to make random numbers. This was a notable feat because the NIST team’s numbers were absolutely guaranteed to be random, a result never before achieved.

Why are random numbers worth so much effort? Random numbers are chaotic for a good cause. They are eminently useful, and not only in gambling. Since random digits appear with equal probabilities, like heads and tails in a coin toss, they guarantee fair outcomes in lotteries, such as those to buy high-value government bonds in the United Kingdom. Precisely because they are unpredictable, they provide enhanced security for the internet and for encrypted messages. And in a nod to their gambling roots, random numbers are essential for the picturesquely named “Monte Carlo” method that can solve otherwise intractable scientific problems…

Using entanglement to generate true mathematical randomness– and why that matters: “The Quantum Random Number Generator.”

* Tristan Perich


As we leave it to chance, we might send learned birthday greetings to Athanasius Kircher; he was born on this date in 1602.  A scholar, he published over 40 works. perhaps most notably on comparative religion, geology, and medicine, but over a range so broad that he was frequently compared to Leonardo Da Vinci (who died on the date in 1519) and was dubbed “Master of a Hundred Arts.”

For a look at one of his more curious works, see “Wonder is the beginning of wisdom.” And his take on The Plague (through which he lived in Italy in 1656), see here.

220px-Athanasius_Kircher_(cropped) source

<span>%d</span> bloggers like this: