(Roughly) Daily

Posts Tagged ‘computer science

“Those who can imagine anything, can create the impossible”*…

As Charlie Wood explains, physicists are building neural networks out of vibrations, voltages and lasers, arguing that the future of computing lies in exploiting the universe’s complex physical behaviors…

… When it comes to conventional machine learning, computer scientists have discovered that bigger is better. Stuffing a neural network with more artificial neurons — nodes that store numerical values — improves its ability to tell a dachshund from a Dalmatian, or to succeed at myriad other pattern recognition tasks. Truly tremendous neural networks can pull off unnervingly human undertakings like composing essays and creating illustrations. With more computational muscle, even grander feats may become possible. This potential has motivated a multitude of efforts to develop more powerful and efficient methods of computation.

[Cornell’s Peter McMahon] and a band of like-minded physicists champion an unorthodox approach: Get the universe to crunch the numbers for us. “Many physical systems can naturally do some computation way more efficiently or faster than a computer can,” McMahon said. He cites wind tunnels: When engineers design a plane, they might digitize the blueprints and spend hours on a supercomputer simulating how air flows around the wings. Or they can stick the vehicle in a wind tunnel and see if it flies. From a computational perspective, the wind tunnel instantly “calculates” how wings interact with air.

A wind tunnel is a single-minded machine; it simulates aerodynamics. Researchers like McMahon are after an apparatus that can learn to do anything — a system that can adapt its behavior through trial and error to acquire any new ability, such as classifying handwritten digits or distinguishing one spoken vowel from another. Recent work has shown that physical systems like waves of light, networks of superconductors and branching streams of electrons can all learn.

“We are reinventing not just the hardware,” said Benjamin Scellier, a mathematician at the Swiss Federal Institute of Technology Zurich in Switzerland who helped design a new physical learning algorithm, but “also the whole computing paradigm.”…

Computing at the largest scale? “How to Make the Universe Think for Us,” from @walkingthedot in @QuantaMagazine.

Alan Turing

###

As we think big, we might send well-connected birthday greetings to Leonard Kleinrock; he was born on this date in 1934. A computer scientist, he made several foundational contributions the field, in particular to the theoretical foundations of data communication in computer networking. Perhaps most notably, he was central to the development of ARPANET (which essentially grew up to be the internet); his graduate students at UCLA were instrumental in developing the communication protocols for internetworking that made that possible.

Kleinrock at a meeting of the members of the Internet Hall of Fame

source

“One of the most singular characteristics of the art of deciphering is the strong conviction possessed by every person, even moderately acquainted with it, that he is able to construct a cipher which nobody else can decipher.”*…

And yet, for centuries no one has succeeded. Now, as Erica Klarreich reports, cryptographers want to know which of five possible worlds we inhabit, which will reveal whether truly secure cryptography is even possible…

Many computer scientists focus on overcoming hard computational problems. But there’s one area of computer science in which hardness is an asset: cryptography, where you want hard obstacles between your adversaries and your secrets.

Unfortunately, we don’t know whether secure cryptography truly exists. Over millennia, people have created ciphers that seemed unbreakable right until they were broken. Today, our internet transactions and state secrets are guarded by encryption methods that seem secure but could conceivably fail at any moment.

To create a truly secure (and permanent) encryption method, we need a computational problem that’s hard enough to create a provably insurmountable barrier for adversaries. We know of many computational problems that seem hard, but maybe we just haven’t been clever enough to solve them. Or maybe some of them are hard, but their hardness isn’t of a kind that lends itself to secure encryption. Fundamentally, cryptographers wonder: Is there enough hardness in the universe to make cryptography possible?

In 1995, Russell Impagliazzo of the University of California, San Diego broke down the question of hardness into a set of sub-questions that computer scientists could tackle one piece at a time. To summarize the state of knowledge in this area, he described five possible worlds — fancifully named Algorithmica, Heuristica, Pessiland, Minicrypt and Cryptomania — with ascending levels of hardness and cryptographic possibility. Any of these could be the world we live in…

Explore each of them– and their implications for secure encryption– at “Which Computational Universe Do We Live In?” from @EricaKlarreich in @QuantaMagazine.

Charles Babbage

###

As we contemplate codes, we might we might send communicative birthday greetings to a frequentlyfeatured hero of your correspondent, Claude Elwood Shannon; he was born on this date in 1916.  A mathematician, electrical engineer– and cryptographer– he is known as “the father of information theory.”  But he is also remembered for his contributions to digital circuit design theory and for his cryptanalysis work during World War II, both as a codebreaker and as a designer of secure communications systems.

220px-ClaudeShannon_MFO3807

 source

“Information was found to be everywhere”*…

A newly-proposed experiment could confirm the fifth state of matter in the universe—and change physics as we know it…

Physicist Dr. Melvin Vopson has already published research suggesting that information has mass and that all elementary particles, the smallest known building blocks of the universe, store information about themselves, similar to the way humans have DNA.

Now, he has designed an experiment—which if proved correct—means he will have discovered that information is the fifth form of matter, alongside solid, liquid, gas and plasma…

Dr. Vopson said: “This would be a eureka moment because it would change physics as we know it and expand our understanding of the universe. But it wouldn’t conflict with any of the existing laws of physics. It doesn’t contradict quantum mechanics, electrodynamics, thermodynamics or classical mechanics. All it does is complement physics with something new and incredibly exciting.”

Dr. Vopson’s previous research suggests that information is the fundamental building block of the universe and has physical mass. He even claims that information could be the elusive dark matter that makes up almost a third of the universe…

Is information is a key element of everything in the universe? “New experiment could confirm the fifth state of matter in the universe.”

* James Gleick, The Information: A History, a Theory, a Flood

###

As we go deep, we might send thoroughly-modeled birthday greetings to Stanislaw Ulam; he was born on this date in 1909. A mathematician and nuclear physicist, he originated the Teller–Ulam design of thermonuclear weapons, discovered the concept of the cellular automaton, and suggested nuclear pulse propulsion.

But his most impactful contribution may have been his creation of the the Monte Carlo method of computation. While playing solitaire during his recovery from surgery, Ulam had thought about playing hundreds of games to estimate statistically the probability of a successful outcome. With ENIAC in mind, he realized that the availability of computers made such statistical methods very practical, and in 1949, he and Nicholas Metropolis published the first unclassified paper on the Monte Carlo method… which is now widely used in virtually every scientific field, in engineering and computer science, finance and business, and the law.

source

“Reality is frequently inaccurate”*…

Machine learning and what it may teach us about reality…

Our latest paradigmatic technology, machine learning, may be revealing the everyday world as more accidental than rule-governed. If so, it will be because machine learning gains its epistemological power from its freedom from the sort of generalisations that we humans can understand or apply.

The opacity of machine learning systems raises serious concerns about their trustworthiness and their tendency towards bias. But the brute fact that they work could be bringing us to a new understanding and experience of what the world is and our role in it…

The world is a black box full of extreme specificity: it might be predictable but that doesn’t mean it is understandable: “Learn from Machine Learning,” by David Weinberger (@dweinberger) in @aeonmag.

(image above: source)

* Douglas Adams, The Restaurant at the End of the Universe

###

As ruminate on the real, we might send carefully-computed birthday greetings to Grace Brewster Murray Hopper.  A seminal computer scientist and Rear Admiral in the U.S. Navy, “Amazing Grace” (as she was known to many in her field) was one of the first programmers of the Harvard Mark I computer (in 1944), invented the first compiler for a computer programming language, and was one of the leaders in popularizing the concept of machine-independent programming languages– which led to the development of COBOL, one of the first high-level programming languages.

Hopper also found and documented the first computer “bug” (in 1947).

She has both a ship (the guided-missile destroyer USS Hopper) and a super-computer (the Cray XE6 “Hopper” at NERSC) named in her honor.

 source

“Must it be? It must be.”*…

A long lost work, found… sort of…

When Ludwig van Beethoven died in 1827, he was three years removed from the completion of his Ninth Symphony, a work heralded by many as his magnum opus. He had started work on his 10th Symphony but, due to deteriorating health, wasn’t able to make much headway: All he left behind were some musical sketches.

Ever since then, Beethoven fans and musicologists have puzzled and lamented over what could have been. His notes teased at some magnificent reward, albeit one that seemed forever out of reach.

Now, thanks to the work of a team of music historians, musicologists, composers and computer scientists, Beethoven’s vision will come to life…

A full recording of Beethoven’s 10th Symphony is set to be released on Oct. 9, 2021, the same day as the world premiere performance scheduled to take place in Bonn, Germany – the culmination of a two-year-plus effort…

How a team of musicologists and computer scientists completed Beethoven’s unfinished 10th Symphony,” replete with a sample of the “finished” work.

* Ludwig van Beethoven

###

As we size up simulacra, we might recall that it was on this date in 1964 that Teressa Bellissimo, at the Anchor Bar in Buffalo, New York, created Buffalo Hot Wings as a snack for her son and several of his college friends.  Her “invention”– an unbreaded chicken wing section (flat or drumette), generally deep-fried then coated or dipped in a sauce consisting of a vinegar-based cayenne pepper hot sauce and melted butter, and served with with celery and carrot sticks and with blue cheese dressing or ranch dressing for dipping– has become a barroom and fast food staple… and has inspired a plethora of “Buffalo” dishes (other fried foods with dipping sauces).

220px-Buffalo_-_Wings_at_Airport_Anchor_Bar

source

%d bloggers like this: