(Roughly) Daily

Posts Tagged ‘claude shannon

“One of the most singular characteristics of the art of deciphering is the strong conviction possessed by every person, even moderately acquainted with it, that he is able to construct a cipher which nobody else can decipher.”*…

And yet, for centuries no one has succeeded. Now, as Erica Klarreich reports, cryptographers want to know which of five possible worlds we inhabit, which will reveal whether truly secure cryptography is even possible…

Many computer scientists focus on overcoming hard computational problems. But there’s one area of computer science in which hardness is an asset: cryptography, where you want hard obstacles between your adversaries and your secrets.

Unfortunately, we don’t know whether secure cryptography truly exists. Over millennia, people have created ciphers that seemed unbreakable right until they were broken. Today, our internet transactions and state secrets are guarded by encryption methods that seem secure but could conceivably fail at any moment.

To create a truly secure (and permanent) encryption method, we need a computational problem that’s hard enough to create a provably insurmountable barrier for adversaries. We know of many computational problems that seem hard, but maybe we just haven’t been clever enough to solve them. Or maybe some of them are hard, but their hardness isn’t of a kind that lends itself to secure encryption. Fundamentally, cryptographers wonder: Is there enough hardness in the universe to make cryptography possible?

In 1995, Russell Impagliazzo of the University of California, San Diego broke down the question of hardness into a set of sub-questions that computer scientists could tackle one piece at a time. To summarize the state of knowledge in this area, he described five possible worlds — fancifully named Algorithmica, Heuristica, Pessiland, Minicrypt and Cryptomania — with ascending levels of hardness and cryptographic possibility. Any of these could be the world we live in…

Explore each of them– and their implications for secure encryption– at “Which Computational Universe Do We Live In?” from @EricaKlarreich in @QuantaMagazine.

Charles Babbage

###

As we contemplate codes, we might we might send communicative birthday greetings to a frequentlyfeatured hero of your correspondent, Claude Elwood Shannon; he was born on this date in 1916.  A mathematician, electrical engineer– and cryptographer– he is known as “the father of information theory.”  But he is also remembered for his contributions to digital circuit design theory and for his cryptanalysis work during World War II, both as a codebreaker and as a designer of secure communications systems.

220px-ClaudeShannon_MFO3807

 source

“I visualize a time when we will be to robots what dogs are to humans. And I am rooting for the machines.”*…

Claude Shannon with his creation, Theseus the maze-solving mouse, an early illustration of machine learning and a follow-on project to the work described below

Readers will know of your correspondent’s fascination with the remarkable Claude Shannon (see here and here), remembered as “the father of information theory,” but seminally involved in so much more. In a recent piece in IEEE Spectrum, the redoubtable Rodney Brooks argues that we should add another credit to Shannon’s list…

Among the great engineers of the 20th century, who contributed the most to our 21st-century technologies? I say: Claude Shannon.

Shannon is best known for establishing the field of information theory. In a 1948 paper, one of the greatest in the history of engineering, he came up with a way of measuring the information content of a signal and calculating the maximum rate at which information could be reliably transmitted over any sort of communication channel. The article, titled “A Mathematical Theory of Communication,” describes the basis for all modern communications, including the wireless Internet on your smartphone and even an analog voice signal on a twisted-pair telephone landline. In 1966, the IEEE gave him its highest award, the Medal of Honor, for that work.

If information theory had been Shannon’s only accomplishment, it would have been enough to secure his place in the pantheon. But he did a lot more…

In 1950 Shannon published an article in Scientific American and also a research paper describing how to program a computer to play chess. He went into detail on how to design a program for an actual computer…

Shannon did all this at a time when there were fewer than 10 computers in the world. And they were all being used for numerical calculations. He began his research paper by speculating on all sorts of things that computers might be programmed to do beyond numerical calculations, including designing relay and switching circuits, designing electronic filters for communications, translating between human languages, and making logical deductions. Computers do all these things today…

The “father of information theory” also paved the way for AI: “How Claude Shannon Helped Kick-start Machine Learning,” from @rodneyabrooks in @IEEESpectrum.

* Claude Shannon (who may or may not have been kidding…)

###

As we ponder possibility, we might send uncertain birthday greetings to Werner Karl Heisenberg; he was born on this date in 1901.  A theoretical physicist, he made important contributions to the theories of the hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, superconductivity, cosmic rays, and subatomic particles.  But he is most widely remembered as a pioneer of quantum mechanics and author of what’s become known as the Heisenberg Uncertainty Principle.  Heisenberg was awarded the Nobel Prize in Physics for 1932 “for the creation of quantum mechanics.”

During World War II, Heisenberg was part of the team attempting to create an atomic bomb for Germany– for which he was arrested and detained by the Allies at the end of the conflict.  He was returned to Germany, where he became director of the Kaiser Wilhelm Institute for Physics, which soon thereafter was renamed the Max Planck Institute for Physics. He later served as president of the German Research Council, chairman of the Commission for Atomic Physics, chairman of the Nuclear Physics Working Group, and president of the Alexander von Humboldt Foundation.

Some things are so serious that one can only joke about them

Werner Heisenberg

source

“We know the past but cannot control it. We control the future but cannot know it.”*…

Readers will know of your correspondent’s fascination with– and admiration for– Claude Shannon

Within engineering and mathematics circles, Shannon is a revered figure. At 21 [in 1937], he published what’s been called the most important master’s thesis of all time, explaining how binary switches could do logic and laying the foundation for all future digital computers. At the age of 32, he published A Mathematical Theory of Communication, which Scientific American called “the Magna Carta of the information age.” Shannon’s masterwork invented the bit, or the objective measurement of information, and explained how digital codes could allow us to compress and send any message with perfect accuracy.

But Shannon wasn’t just a brilliant theoretical mind — he was a remarkably fun, practical, and inventive one as well. There are plenty of mathematicians and engineers who write great papers. There are fewer who, like Shannon, are also jugglers, unicyclists, gadgeteers, first-rate chess players, codebreakers, expert stock pickers, and amateur poets.

Shannon worked on the top-secret transatlantic phone line connecting FDR and Winston Churchill during World War II and co-built what was arguably the world’s first wearable computer. He learned to fly airplanes and played the jazz clarinet. He rigged up a false wall in his house that could rotate with the press of a button, and he once built a gadget whose only purpose when it was turned on was to open up, release a mechanical hand, and turn itself off. Oh, and he once had a photo spread in Vogue.

Think of him as a cross between Albert Einstein and the Dos Equis guy…

From Jimmy Soni (@jimmyasoni), co-author of A Mind At Play: How Claude Shannon Invented the Information Age: “11 Life Lessons From History’s Most Underrated Genius.”

* Claude Shannon

###

As we learn from the best, we might recall that it was on this date in 1946 that an early beneficiary of Shannon’s thinking, the ENIAC (Electronic Numerical Integrator And Computer), was first demonstrated in operation.  (It was announced to the public the following day.) The first general-purpose computer (Turing-complete, digital, and capable of being programmed and re-programmed to solve different problems), ENIAC was begun in 1943, as part of the U.S’s war effort (as a classified military project known as “Project PX”); it was conceived and designed by John Mauchly and Presper Eckert of the University of Pennsylvania, where it was built.  The finished machine, composed of 17,468 electronic vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors and around 5 million hand-soldered joints, weighed more than 27 tons and occupied a 30 x 50 foot room– in its time the largest single electronic apparatus in the world.  ENIAC’s basic clock speed was 100,000 cycles per second. Today’s home computers have clock speeds of 1,000,000,000 cycles per second.

 source

“Maps codify the miracle of existence”*…

 

Forgotten maps

 

Several years ago, I stumbled on a map so shocking to my modern workaday sensibilities that I couldn’t quite believe my eyes. “Oh, zounds, look at this old thing,” I almost certainly thought.

map

We live in a time when the data visualization establishment will have you know that pie charts are garbage graphics only to be employed by foolhardy amateurs. Similarly, your friendly neighborhood Carto-vigilante will put you on notice for allowing something as vile as overlapping symbols to appear on a map. Occlusion be gone! 🙅‍♀️️🗺🙅‍♂

But there was a time when people made and proudly shared maps of all kinds with relative impunity. And I believed I’d found one of them. After all, it had overlapping… pie charts! So, I took to Twitter, declared it a “forgotten map type,and went to bed.

Years (and countless throwaway tweets) later, I stumbled on that map again (so much for being “forgotten,” eh?) and pointed out its goofy New York label. In response, Toph Tucker noted he’d searched my timeline for more “forgotten map types” and come up empty. His comment was, simply, “well this is disappointing….

Fair.

So, I slowly amassed a more complete list…

Revel in geographer Tim Wallace‘s (@wallacetim) “Forgotten Map Types.” (And/or access them here.)

* Nicholas Crane, Mercator: The Man Who Mapped the Planet

###

As we find our way, we might spare a thought for a cartographer of a different sort: Claude Elwood Shannon; he died on this date in 2001.  A mathematician, electrical engineer, and cryptographer, he is known as “the father of information theory,” of which he was the original architect.  But he is also remembered for his contributions to digital circuit design theory and for his cryptanalysis work during World War II, both as a codebreaker and as a designer of secure communications systems.

220px-ClaudeShannon_MFO3807 source

 

Written by (Roughly) Daily

February 27, 2020 at 1:01 am

“Information is a difference that makes a difference”*…

 

Shannon information

 

Information was something guessed at rather than spoken of, something implied in a dozen ways before it was finally tied down. Information was a presence offstage. It was there in the studies of the physiologist Hermann von Helmholtz, who, electrifying frog muscles, first timed the speed of messages in animal nerves just as Thomson was timing the speed of messages in wires. It was there in the work of physicists like Rudolf Clausius and Ludwig Boltzmann, who were pioneering ways to quantify disorder—entropy—little suspecting that information might one day be quantified in the same way. Above all, information was in the networks that descended in part from the first attempt to bridge the Atlantic with underwater cables. In the attack on the practical engineering problems of connecting Points A and B—what is the smallest number of wires we need to string up to handle a day’s load of messages? how do we encrypt a top-secret telephone call?—the properties of information itself, in general, were gradually uncovered.

By the time of Claude Shannon’s childhood, the world’s communications networks were no longer passive wires acting as conduits for electricity, a kind of electron plumbing. They were continent-spanning machines, arguably the most complex machines in existence. Vacuum-tube amplifiers strung along the telephone lines added power to voice signals that would have otherwise attenuated and died out on their thousand-mile journeys. A year before Shannon was born, in fact, Bell and Watson inaugurated the transcontinental phone line by reenacting their first call, this time with Bell in New York and Watson in San Francisco. By the time Shannon was in elementary school, feedback systems managed the phone network’s amplifiers automatically, holding the voice signals stable and silencing the “howling” or “singing” noises that plagued early phone calls, even as the seasons turned and the weather changed around the sensitive wires that carried them. Each year that Shannon placed a call, he was less likely to speak to a human operator and more likely to have his call placed by machine, by one of the automated switchboards that Bell Labs grandly called a “mechanical brain.” In the process of assembling and refining these sprawling machines, Shannon’s generation of scientists came to understand information in much the same way that an earlier generation of scientists came to understand heat in the process of building steam engines.

It was Shannon who made the final synthesis, who defined the concept of information and effectively solved the problem of noise. It was Shannon who was credited with gathering the threads into a new science…

The story of Claude Shannon, his colorful life–  and the birth of the Information Age: “How Information Got Re-Invented.”

* Gregory Bateson

###

As we separate the signal from the noise, we might send communicative birthday greetings to the subject of today’s main post, Claude Elwood Shannon; he was born on this date in 1916.  A mathematician, electrical engineer, and cryptographer, he is, for reasons explained in the article featured above, known as “the father of information theory.”  But he is also remembered for his contributions to digital circuit design theory and for his cryptanalysis work during World War II, both as a codebreaker and as a designer of secure communications systems.

220px-ClaudeShannon_MFO3807 source

 

%d bloggers like this: