(Roughly) Daily

Posts Tagged ‘claude shannon

“It was orderly, like the universe. It had logic. It was dependable. Using it allowed a kind of moral uplift, as one’s own chaos was also brought under control.”*…

(Roughly) Daily has looked before at the history of the filing cabinet, rooted in the work of Craig Robertson (@craig2robertson). He has deepened his research and published a new book, The Filing Cabinet: A Vertical History of Information. An Xiao Mina offers an appreciation– and a consideration of one of the central questions it raises: can emergent knowledge coexist with an internet that privileges the kind “certainty” that’s implicit in the filing paradigm that was born with the filing cabinet and that informs our “knowledge systems” today…

… The 20th century saw an emergent information paradigm shaped by corporate capitalism, which emphasized maximizing profit and minimizing the time workers spent on tasks. Offices once kept their information in books—think Ebenezer Scrooge with his quill pen, updating his thick ledger on Christmas. The filing cabinet changed all that, encouraging what Robertson calls “granular certainty,” or “the drive to break more and more of life and its everyday routines into discrete, observable, and manageable parts.” This represented an important conceptualization: Information became a practical unit of knowledge that could be standardized, classified, and effortlessly stored and retrieved.

Take medical records, which require multiple layers of organization to support routine hospital business. “At the Bryn Mawr Hospital,” Robertson writes, “six different card files provided access to patient information: an alphabetical file of admission cards for discharged patients, an alphabetical file for the accident ward, a file to record all operations, a disease file, a diagnostic file, and a doctors’ file that recorded the number of patients each physician referred to the hospital.” The underlying logic of this system was that the storage of medical records didn’t just keep them safe; it made sure that those records could be accessed easily.

Robertson’s deep focus on the filing cabinet grounds the book in history and not historical analogy. He touches very little on Big Data and indexing and instead dives into the materiality of the filing cabinet and the principles of information management that guided its evolution. But students of technology and information studies will immediately see this history shaping our world today…

[And] if the filing cabinet, as a tool of business and capital, guides how we access digital information today, its legacy of certainty overshadows the messiness intrinsic to acquiring knowledge—the sort that requires reflection, contextualization, and good-faith debate. Ask the internet difficult questions with complex answers—questions of philosophy, political science, aesthetics, perception—and you’ll get responses using the same neat little index cards with summaries of findings. What makes for an ethical way of life? What is the best English-language translation of the poetry of Borges? What are the long-term effects of social inequalities, and how do we resolve them? Is it Yanny or Laurel?

Information collection and distribution today tends to follow the rigidity of cabinet logic to its natural extreme, but that bias leaves unattended more complex puzzles. The human condition inherently demands a degree of comfort with uncertainty and ambiguity, as we carefully balance incomplete and conflicting data points, competing value systems, and intricate frameworks to arrive at some form of knowing. In that sense, the filing cabinet, despite its deep roots in our contemporary information architecture, is just one step in our epistemological journey, not its end…

A captivating new history helps us see a humble appliance’s sweeping influence on modern life: “The Logic of the Filing Cabinet Is Everywhere.”

* Jeanette Winterson, Why Be Happy When You Could Be Normal?


As we store and retrieve, we might recall that it was on this date in 19955 that the term “artificial intelligence” was coined in a proposal for a “2 month, 10 man study of artificial intelligence” submitted by John McCarthy (Dartmouth College), Marvin Minsky (Harvard University), Nathaniel Rochester (IBM), and Claude Shannon (Bell Telephone Laboratories). The workshop, which took place at Dartmouth a year later, in July and August 1956, is generally recognized as the official birth date of the new field. 

Dartmouth Conference attendees: Marvin Minsky, Claude Shannon, Ray Solomonoff and other scientists at the Dartmouth Summer Research Project on Artificial Intelligence (Photo: Margaret Minsky)


“One of the most singular characteristics of the art of deciphering is the strong conviction possessed by every person, even moderately acquainted with it, that he is able to construct a cipher which nobody else can decipher.”*…

And yet, for centuries no one has succeeded. Now, as Erica Klarreich reports, cryptographers want to know which of five possible worlds we inhabit, which will reveal whether truly secure cryptography is even possible…

Many computer scientists focus on overcoming hard computational problems. But there’s one area of computer science in which hardness is an asset: cryptography, where you want hard obstacles between your adversaries and your secrets.

Unfortunately, we don’t know whether secure cryptography truly exists. Over millennia, people have created ciphers that seemed unbreakable right until they were broken. Today, our internet transactions and state secrets are guarded by encryption methods that seem secure but could conceivably fail at any moment.

To create a truly secure (and permanent) encryption method, we need a computational problem that’s hard enough to create a provably insurmountable barrier for adversaries. We know of many computational problems that seem hard, but maybe we just haven’t been clever enough to solve them. Or maybe some of them are hard, but their hardness isn’t of a kind that lends itself to secure encryption. Fundamentally, cryptographers wonder: Is there enough hardness in the universe to make cryptography possible?

In 1995, Russell Impagliazzo of the University of California, San Diego broke down the question of hardness into a set of sub-questions that computer scientists could tackle one piece at a time. To summarize the state of knowledge in this area, he described five possible worlds — fancifully named Algorithmica, Heuristica, Pessiland, Minicrypt and Cryptomania — with ascending levels of hardness and cryptographic possibility. Any of these could be the world we live in…

Explore each of them– and their implications for secure encryption– at “Which Computational Universe Do We Live In?” from @EricaKlarreich in @QuantaMagazine.

Charles Babbage


As we contemplate codes, we might we might send communicative birthday greetings to a frequentlyfeatured hero of your correspondent, Claude Elwood Shannon; he was born on this date in 1916.  A mathematician, electrical engineer– and cryptographer– he is known as “the father of information theory.”  But he is also remembered for his contributions to digital circuit design theory and for his cryptanalysis work during World War II, both as a codebreaker and as a designer of secure communications systems.



“I visualize a time when we will be to robots what dogs are to humans. And I am rooting for the machines.”*…

Claude Shannon with his creation, Theseus the maze-solving mouse, an early illustration of machine learning and a follow-on project to the work described below

Readers will know of your correspondent’s fascination with the remarkable Claude Shannon (see here and here), remembered as “the father of information theory,” but seminally involved in so much more. In a recent piece in IEEE Spectrum, the redoubtable Rodney Brooks argues that we should add another credit to Shannon’s list…

Among the great engineers of the 20th century, who contributed the most to our 21st-century technologies? I say: Claude Shannon.

Shannon is best known for establishing the field of information theory. In a 1948 paper, one of the greatest in the history of engineering, he came up with a way of measuring the information content of a signal and calculating the maximum rate at which information could be reliably transmitted over any sort of communication channel. The article, titled “A Mathematical Theory of Communication,” describes the basis for all modern communications, including the wireless Internet on your smartphone and even an analog voice signal on a twisted-pair telephone landline. In 1966, the IEEE gave him its highest award, the Medal of Honor, for that work.

If information theory had been Shannon’s only accomplishment, it would have been enough to secure his place in the pantheon. But he did a lot more…

In 1950 Shannon published an article in Scientific American and also a research paper describing how to program a computer to play chess. He went into detail on how to design a program for an actual computer…

Shannon did all this at a time when there were fewer than 10 computers in the world. And they were all being used for numerical calculations. He began his research paper by speculating on all sorts of things that computers might be programmed to do beyond numerical calculations, including designing relay and switching circuits, designing electronic filters for communications, translating between human languages, and making logical deductions. Computers do all these things today…

The “father of information theory” also paved the way for AI: “How Claude Shannon Helped Kick-start Machine Learning,” from @rodneyabrooks in @IEEESpectrum.

* Claude Shannon (who may or may not have been kidding…)


As we ponder possibility, we might send uncertain birthday greetings to Werner Karl Heisenberg; he was born on this date in 1901.  A theoretical physicist, he made important contributions to the theories of the hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, superconductivity, cosmic rays, and subatomic particles.  But he is most widely remembered as a pioneer of quantum mechanics and author of what’s become known as the Heisenberg Uncertainty Principle.  Heisenberg was awarded the Nobel Prize in Physics for 1932 “for the creation of quantum mechanics.”

During World War II, Heisenberg was part of the team attempting to create an atomic bomb for Germany– for which he was arrested and detained by the Allies at the end of the conflict.  He was returned to Germany, where he became director of the Kaiser Wilhelm Institute for Physics, which soon thereafter was renamed the Max Planck Institute for Physics. He later served as president of the German Research Council, chairman of the Commission for Atomic Physics, chairman of the Nuclear Physics Working Group, and president of the Alexander von Humboldt Foundation.

Some things are so serious that one can only joke about them

Werner Heisenberg


“We know the past but cannot control it. We control the future but cannot know it.”*…

Readers will know of your correspondent’s fascination with– and admiration for– Claude Shannon

Within engineering and mathematics circles, Shannon is a revered figure. At 21 [in 1937], he published what’s been called the most important master’s thesis of all time, explaining how binary switches could do logic and laying the foundation for all future digital computers. At the age of 32, he published A Mathematical Theory of Communication, which Scientific American called “the Magna Carta of the information age.” Shannon’s masterwork invented the bit, or the objective measurement of information, and explained how digital codes could allow us to compress and send any message with perfect accuracy.

But Shannon wasn’t just a brilliant theoretical mind — he was a remarkably fun, practical, and inventive one as well. There are plenty of mathematicians and engineers who write great papers. There are fewer who, like Shannon, are also jugglers, unicyclists, gadgeteers, first-rate chess players, codebreakers, expert stock pickers, and amateur poets.

Shannon worked on the top-secret transatlantic phone line connecting FDR and Winston Churchill during World War II and co-built what was arguably the world’s first wearable computer. He learned to fly airplanes and played the jazz clarinet. He rigged up a false wall in his house that could rotate with the press of a button, and he once built a gadget whose only purpose when it was turned on was to open up, release a mechanical hand, and turn itself off. Oh, and he once had a photo spread in Vogue.

Think of him as a cross between Albert Einstein and the Dos Equis guy…

From Jimmy Soni (@jimmyasoni), co-author of A Mind At Play: How Claude Shannon Invented the Information Age: “11 Life Lessons From History’s Most Underrated Genius.”

* Claude Shannon


As we learn from the best, we might recall that it was on this date in 1946 that an early beneficiary of Shannon’s thinking, the ENIAC (Electronic Numerical Integrator And Computer), was first demonstrated in operation.  (It was announced to the public the following day.) The first general-purpose computer (Turing-complete, digital, and capable of being programmed and re-programmed to solve different problems), ENIAC was begun in 1943, as part of the U.S’s war effort (as a classified military project known as “Project PX”); it was conceived and designed by John Mauchly and Presper Eckert of the University of Pennsylvania, where it was built.  The finished machine, composed of 17,468 electronic vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors and around 5 million hand-soldered joints, weighed more than 27 tons and occupied a 30 x 50 foot room– in its time the largest single electronic apparatus in the world.  ENIAC’s basic clock speed was 100,000 cycles per second. Today’s home computers have clock speeds of 1,000,000,000 cycles per second.


“Maps codify the miracle of existence”*…


Forgotten maps


Several years ago, I stumbled on a map so shocking to my modern workaday sensibilities that I couldn’t quite believe my eyes. “Oh, zounds, look at this old thing,” I almost certainly thought.


We live in a time when the data visualization establishment will have you know that pie charts are garbage graphics only to be employed by foolhardy amateurs. Similarly, your friendly neighborhood Carto-vigilante will put you on notice for allowing something as vile as overlapping symbols to appear on a map. Occlusion be gone! 🙅‍♀️️🗺🙅‍♂

But there was a time when people made and proudly shared maps of all kinds with relative impunity. And I believed I’d found one of them. After all, it had overlapping… pie charts! So, I took to Twitter, declared it a “forgotten map type,and went to bed.

Years (and countless throwaway tweets) later, I stumbled on that map again (so much for being “forgotten,” eh?) and pointed out its goofy New York label. In response, Toph Tucker noted he’d searched my timeline for more “forgotten map types” and come up empty. His comment was, simply, “well this is disappointing….


So, I slowly amassed a more complete list…

Revel in geographer Tim Wallace‘s (@wallacetim) “Forgotten Map Types.” (And/or access them here.)

* Nicholas Crane, Mercator: The Man Who Mapped the Planet


As we find our way, we might spare a thought for a cartographer of a different sort: Claude Elwood Shannon; he died on this date in 2001.  A mathematician, electrical engineer, and cryptographer, he is known as “the father of information theory,” of which he was the original architect.  But he is also remembered for his contributions to digital circuit design theory and for his cryptanalysis work during World War II, both as a codebreaker and as a designer of secure communications systems.

220px-ClaudeShannon_MFO3807 source


Written by (Roughly) Daily

February 27, 2020 at 1:01 am

%d bloggers like this: