Posts Tagged ‘Albert Einstein’
“You must not fool yourself, and you are the easiest person to fool”*…

The quest for room-temperature superconducting seems a bit like the hunt for the Holy Grail. A superconductor is a material that will transmit electricity with no resistance– thus very quickly and with no loss. (Estimates of loss in the U.S. electric grid, most of it due to heat loss from resistance in transmission, range from 5-10%; at the low end, that’s enough to power all seven Central American countries four times over.) Beyond that (already extraordinary) benefit, superconductivity could enable high-efficiency electric motors, maglev trains, low-cost magnets for MRI and nuclear fusion, a promising form of quantum computing (superconducting qubits), and much, much more.
Superconductivity was discovered in 1911, and has been the subject of fervent study ever since; indeed, four Nobel prizes have gone to scientists working on it, most recently in 2003. But while both understanding and application have advanced, it has remained the case that superconductivity can only be achieved at very low temperatures (or very high pressures). Until the mid-80s, it was believed that it could be established only below 30 Kelvin (-405.67 degrees Farenheit); by 2015, scientists had gotten that up to 80 K (-316 degrees Farenheit)… that’s to say, still requiring way too much cooling to be widely practical.
So imagine the excitement earlier this month, when…
In a packed talk on Tuesday afternoon at the American Physical Society’s annual March meeting in Las Vegas, Ranga Dias, a physicist at the University of Rochester, announced that he and his team had achieved a century-old dream of the field: a superconductor that works at room temperature and near-room pressure. Interest was so intense in the presentation that security personnel stopped entry to the overflowing room more than fifteen minutes before the talk. They could be overheard shooing curious onlookers away shortly before Dias began speaking.
The results, published in Nature, appear to show that a conventional conductor — a solid composed of hydrogen, nitrogen and the rare-earth metal lutetium — was transformed into a flawless material capable of conducting electricity with perfect efficiency.
While the announcement has been greeted with enthusiasm by some scientists, others are far more cautious, pointing to the research group’s controversial history of alleged research malfeasance. (Dias strongly denies the accusations.) Reactions by 10 independent experts contacted by Quanta ranged from unbridled excitement to outright dismissal…
Interesting if true– a paper in Nature divides the research community: “Room-Temperature Superconductor Discovery Meets With Resistance,” from @QuantaMagazine.
* Richard Feynman
###
As we review research, we might pause, on Pi Day, for a piece of pi(e)…

… in celebration of Albert Einstein’s birthday; he was born on this date in 1879.

“Everything should be made as simple as possible, but not simpler.”
“If we are to prevent megatechnics from further controlling and deforming every aspect of human culture, we shall be able to do so only with the aid of a radically different model derived directly, not from machines, but from living organisms and organic complexes (ecosystems)”*…
In a riff on Lewis Mumford, the redoubtable L. M. Sacasas addresses the unraveling of modernity…
The myth of the machine underlies a set of three related and interlocking presumptions which characterized modernity: objectivity, impartiality, and neutrality. More specifically, the presumptions that we could have objectively secured knowledge, impartial political and legal institutions, and technologies that were essentially neutral tools but which were ordinarily beneficent. The last of these appears to stand somewhat apart from the first two in that it refers to material culture rather than to what might be taken as more abstract intellectual or moral stances. In truth, however, they are closely related. The more abstract intellectual and institutional pursuits were always sustained by a material infrastructure, and, more importantly, the machine supplied a master template for the organization of human affairs.
…
Just as the modern story began with the quest for objectively secured knowledge, this ideal may have been the first to lose its implicit plausibility. Since the late 19th century onward, philosophers, physicists, sociologists, anthropologists, psychologists, and historians have, among others, proposed a more complex picture that emphasized the subjective, limited, contingent, situated, and even irrational dimensions of how humans come to know the world. The ideal of objectively secured knowledge became increasingly questionable throughout the 20th century. Some of these trends get folded under the label “postmodernism,” but I found the term unhelpful at best a decade ago—now find it altogether useless.
We can similarly trace a growing disillusionment with the ostensible impartiality of modern institutions. This takes at least two forms. On the one hand, we might consider the frustrating and demoralizing character of modern bureaucracies, which we can describe as rule-based machines designed to outsource judgement and enhance efficiency. On the other, we can note the heightened awareness of the actual failures of modern institutions to live up to the ideals of impartiality, which has been, in part, a function of the digital information ecosystem.
But while faith in the possibility of objectively secured knowledge and impartial institutions faltered, the myth of the machine persisted in the presumption that technology itself was fundamentally neutral. Until very recently, that is. Or so it seems. And my thesis (always for disputation) is that the collapse of this last manifestation of the myth brings the whole house down. This in part because of how much work the presumption of technological neutrality was doing all along to hold American society together. (International readers: as always read with a view to your own setting. I suspect there are some areas of broad overlap and other instances when my analysis won’t travel well). Already by the late 19th century, progress had become synonymous with technological advancements, as Leo Marx argued. If social, political, or moral progress stalled, then at least the advance of technology could be counted on…
But over the last several years, the plausibility of this last and also archetypal manifestation of the myth of the machine has also waned. Not altogether, to be sure, but in important and influential segments of society and throughout a wide cross-section of society, too. One can perhaps see the shift most clearly in the public discourse about social media and smart phones, but this may be a symptom of a larger disillusionment with technology. And not only technological artifacts and systems, but also with the technocratic ethos and the public role of expertise.
If the myth of the machine in these three manifestations, was, in fact, a critical element of the culture of modernity, underpinning its aspirations, then when each in turn becomes increasingly implausible the modern world order comes apart. I’d say that this is more or less where we’re at. You could usefully analyze any number of cultural fault lines through this lens. The center, which may not in fact hold, is where you find those who still operate as if the presumptions of objectivity, impartiality, and neutrality still compelled broad cultural assent, and they are now assailed from both the left and the right by those who have grown suspicious or altogether scornful of such presumptions. Indeed, the left/right distinction may be less helpful than the distinction between those who uphold some combination of the values of objectivity, impartiality, and neutrality and those who no longer find them compelling or desirable.
…
What happens when the systems and strategies deployed to channel often violent clashes within a population deeply, possibly intractably divided about substantive moral goods and now even about what Arendt characterized as the publicly accessible facts upon which competing opinions could be grounded—what happens when these systems and strategies fail?
It is possible to argue that they failed long ago, but the failure was veiled by an unevenly distributed wave of material abundance. Citizens became consumers and, by and large, made peace with the exchange. After all, if the machinery of government could run of its own accord, what was their left to do but enjoy the fruits of prosperity. But what if abundance was an unsustainable solution, either because it taxed the earth at too high a rate or because it was purchased at the cost of other values such as rootedness, meaningful work and involvement in civic life, abiding friendships, personal autonomy, and participation in rich communities of mutual care and support? Perhaps in the framing of that question, I’ve tipped my hand about what might be the path forward.
At the heart of technological modernity there was the desire—sometimes veiled, often explicit—to overcome the human condition. The myth of the machine concealed an anti-human logic: if the problem is the failure of the human to conform to the pattern of the machine, then bend the human to the shape of the machine or eliminate the human altogether. The slogan of the one of the high-modernist world’s fairs of the 1930s comes to mind: “Science Finds, Industry Applies, Man Conforms.” What is now being discovered in some quarters, however, is that the human is never quite eliminated, only diminished…
Eminently worth reading in full: “The Myth of the Machine, ” from @LMSacasas.
For a deep dive into similar waters, see John Ralston Saul‘s (@JohnRalstonSaul) Voltaire’s Bastards.
[Image above: source]
* Lewis Mumford, The Myth of the Machine
###
As we rethink rudiments, we might recall that it was on this date in 1919 that Arthur Eddington confirmed Einstein’s light-bending prediction– a part of The Theory of General Relativity– using photos of a solar eclipse. Eddington’s paper the following year was the “debut” of Einstein’s theoretical work in most of the English-speaking world (and occasioned an urban legend: when a reporter supposedly suggested that “only three people understand relativity,” Eddington was supposed to have jokingly replied “Oh, who’s the third?”)

“In our world of big names, curiously, our true heroes tend to be anonymous”*…

Now let us praise a man who should be famous…
Alfred Lee Loomis was a lawyer, a banker, a socialite, possibly one of the most influential physical scientists of the twentieth century, and can reasonably claim to have done more than any other civilian to bring a swift end to World War II. And yet, in the intervening decades, he’s faded into obscurity.
Loomis’s story is one of incredible intellect, unimaginable wealth, a breadth of ability that spanned from the abstract and theoretical across to the practical and logistical, and an unbelievable knack for knowing the right people and putting them into contact with one another. He applied these generational talents relentlessly to the hardest problems facing science throughout the first half of the twentieth century. He deserves to be far better known…
source
To be more specific…
Alfred Lee Loomis (November 4, 1887 – August 11, 1975) was an American attorney, investment banker, philanthropist, scientist, physicist, inventor of the LORAN Long Range Navigation System and a lifelong patron of scientific research. He established the Loomis Laboratory in Tuxedo Park, New York, and his role in the development of radar and the atomic bomb contributed to the Allied victory in World War II. He invented the Aberdeen Chronograph for measuring muzzle velocities, contributed significantly… to the development of a ground-controlled approach technology for aircraft, and participated in preliminary meetings of the Manhattan Project.
Loomis also made contributions to biological instrumentation. Working with Edmund Newton Harvey he co-invented the microscope centrifuge, and pioneered techniques for electroencephalography. In 1937, he discovered the sleep K-complex brainwave. During the Great Depression, Loomis anonymously paid the Physical Review journal’s fees for authors who could not afford them….
source
As Nobel Laureate Luis Alvarez noted…
… after the turn of the century, university scientists found it possible to earn a living teaching students, while doing research “on the side.” So the true amateur has almost disappeared—Alfred Loomis may well be remembered as the last of the great amateurs of science. He had distinguished careers as a lawyer, as an Army officer, and as an investment banker before he turned his full energies to the pursuit of scientific knowledge, first in the field of physics, and later as a biologist. By any measure that can be employed, he was one of the most influential physical scientists of this century. In support of that assessment, one can note: (1) his election to
source
this Academy when he was 53 years old, (2) his honorary degrees from prestigious universities, (3) his crucial wartime role as director of all NDRC-OSRD radar research in World War II, and (4) his exceedingly close personal relationships with many of the leaders of American science and government in the mid-twentieth century…
The financier who became a scientist and helped win World War II: Alfred Lee Loomis. For more, see Jennet Conant’s Tuxedo Park: A Wall Street Tycoon and the Secret Palace of Science That Changed the Course of World War II. (Conant is the grandaughter of James B. Conat– in the photo above– chemist, President of Harvard, and friend/collaborator of Loomis).
* Daniel J. Boorstin
###
As we applaud awesome amateurs, we might send insightful birthday greetings to Edward Williams Morley; he was born on this date in 1838. A chemist who was first to precisely determine the atomic weight of oxygen, he is probably best remembered for his collaboration with the physicist Albert A. Michelson. In what we call the Michelson–Morley experiment (actually a number of experiments conducted between April and July in 1887), they attempted to detect the luminiferous aether, a supposed medium permeating space that was thought to be the carrier of light waves; their method was the very precise measurement of the speed of light (in various directions, and at different times of the year, as the Earth revolved in its orbit around the Sun). Michelson and Morley always found that the speed of light did not vary at all depending on the direction of measurement, or the position of the Earth in its orbit– the so-called “null result.”
Neither Morley nor Michelson ever considered that these null results disproved the hypothesis of the existence of “luminiferous aether.” But other scientists began to suspect that they did. Almost two decades later the results of the Michelson–Morley experiments supported Albert Einstein’s strong postulate (in 1905) that the speed of light is a constant in all inertial frames of reference as part of his Special Theory of Relativity.
“Now, you can continue to protect your home and family even after you are gone”…
The craftsmen at Holy Smoke will take the cremated remains of a loved one and pack them into firearm ammunition: one pound of human ash yields 250 shotgun shells, 100 rifle cartridges, or 250 pistol cartridges. The company’s website avers…
The services provided by Holy Smoke are a fraction of the cost of what most funeral burial services cost – oftentimes saving families as much as 75% of traditional costs.
The ecological footprint caused by our service, as opposed to most of the current funeral interment methods, is virtually non-existent.
Now, you can continue to protect your home and family even after you are gone.
Or, as one of the company’s founders suggests in recounting how he conceived the service, one can use the remains to “share the death”:
My friend smiled and said “You know I’ve thought about this for some time and I want to be cremated. Then I want my ashes put into some turkey load shotgun shells and have someone that knows how to turkey hunt use the shotgun shells with my ashes to shoot a turkey. That way I will rest in peace knowing that the last thing that one turkey will see is me, screaming at him at about 900 feet per second.”
[TotH to Gizmodo]
As we aim for the afterlife, we might recall that it was on this date in 1939 that physicists Albert Einstein and Leó Szilárd wrote President Franklin D. Roosevelt, urging him to begin develop a nuclear weapon. Their letter was delivered a couple of months later, and led to the formation of the Advisory Committee on Uranium (the “Briggs Uranium Committee”) and ultimately the Manhattan Project.
Einstein and Szilárd (source)
You must be logged in to post a comment.