(Roughly) Daily

Posts Tagged ‘superconductors

“You must not fool yourself, and you are the easiest person to fool”*…

One hallmark of superconductivity is the Meissner effect, which expels all magnetic fields from a material — a property that allows a superconductor to levitate, as seen here.

The quest for room-temperature superconducting seems a bit like the hunt for the Holy Grail. A superconductor is a material that will transmit electricity with no resistance– thus very quickly and with no loss. (Estimates of loss in the U.S. electric grid, most of it due to heat loss from resistance in transmission, range from 5-10%; at the low end, that’s enough to power all seven Central American countries four times over.) Beyond that (already extraordinary) benefit, superconductivity could enable high-efficiency electric motors, maglev trains, low-cost magnets for MRI and nuclear fusion, a promising form of quantum computing (superconducting qubits), and much, much more.

Superconductivity was discovered in 1911, and has been the subject of fervent study ever since; indeed, four Nobel prizes have gone to scientists working on it, most recently in 2003. But while both understanding and application have advanced, it has remained the case that superconductivity can only be achieved at very low temperatures (or very high pressures). Until the mid-80s, it was believed that it could be established only below 30 Kelvin (-405.67 degrees Farenheit); by 2015, scientists had gotten that up to 80 K (-316 degrees Farenheit)… that’s to say, still requiring way too much cooling to be widely practical.

So imagine the excitement earlier this month, when…

In a packed talk on Tuesday afternoon at the American Physical Society’s annual March meeting in Las Vegas, Ranga Dias, a physicist at the University of Rochester, announced that he and his team had achieved a century-old dream of the field: a superconductor that works at room temperature and near-room pressure. Interest was so intense in the presentation that security personnel stopped entry to the overflowing room more than fifteen minutes before the talk. They could be overheard shooing curious onlookers away shortly before Dias began speaking.

The results, published in Nature, appear to show that a conventional conductor — a solid composed of hydrogen, nitrogen and the rare-earth metal lutetium — was transformed into a flawless material capable of conducting electricity with perfect efficiency.

While the announcement has been greeted with enthusiasm by some scientists, others are far more cautious, pointing to the research group’s controversial history of alleged research malfeasance. (Dias strongly denies the accusations.) Reactions by 10 independent experts contacted by Quanta ranged from unbridled excitement to outright dismissal…

Interesting if true– a paper in Nature divides the research community: “Room-Temperature Superconductor Discovery Meets With Resistance,” from @QuantaMagazine.

* Richard Feynman


As we review research, we might pause, on Pi Day, for a piece of pi(e)…


… in celebration of Albert Einstein’s birthday; he was born on this date in 1879.


“Everything should be made as simple as possible, but not simpler.”

Written by (Roughly) Daily

March 14, 2023 at 1:00 am

%d bloggers like this: