(Roughly) Daily

Posts Tagged ‘complex systems

“The future belongs to those who give the next generation reason for hope”*…

After this post, your correspondent is heading into his customary Holiday Hiatus; regular service will resume in early 2021. In the meantime, a piece to ponder…

“Civilizations with long nows look after things better,” says Brian Eno.  “In those places you feel a very strong but flexible structure which is built to absorb shocks and in fact incorporate them.”undefined  You can imagine how such a process could evolve—all civilizations suffer shocks; only the ones that absorb the shocks survive.  That still doesn’t explain the mechanism.

In recent years a few scientists (such as R. V. O’Neill and C. S. Holling) have been probing the same issue in ecological systems: how do they manage change, how do they absorb and incorporate shocks?  The answer appears to lie in the relationship between components in a system that have different change-rates and different scales of size.  Instead of breaking under stress like something brittle, these systems yield as if they were soft.  Some parts respond quickly to the shock, allowing slower parts to ignore the shock and maintain their steady duties of system continuity.

Consider the differently paced components to be layers.  Each layer is functionally different from the others and operates somewhat independently, but each layer influences and responds to the layers closest to it in a way that makes the whole system resilient.

From the fastest layers to the slowest layers in the system, the relationship can be described as follows:

All durable dynamic systems have this sort of structure.  It is what makes them adaptable and robust…

Stewart Brand (@stewartbrand) unpacks a concept that he popularized in his remarkable book How Buildings Learn and that animates the work of The Long Now Foundation, which he co-founded– pace layers, which provide many-leveled corrective, stabilizing feedback throughout the system.  It is in the contradictions between these layers that civilization finds its surest health: “Pace Layering: How Complex Systems Learn and Keep Learning.” Do click through and read in full…

* Pierre Teilhard de Chardin


As we take the long view, we might recall that it was on this date in 1872 that HMS Challenger set sail from Portsmouth. Modified for scientific exploration, its activities over the next four years, known as The Challenger Expedition, laid the foundation for the entire academic and research discipline of oceanography.

The Challenger


“Life is really simple, but we insist on making it complicated”*…

One of the dominant themes of the last few years is that nothing makes sense. Donald Trump is president, QAnon has mainstreamed fringe conspiracy theories, and hundreds of thousands are dead from a pandemic and climate change while many Americans do not believe that the pandemic or climate change are deadly. It’s incomprehensible.

I am here to tell you the the reason that so much of the world seems incomprehensible is that it is incomprehensible. From social media to the global economy to supply chains, our lives rest precariously on systems that have become so complex, and we have yielded so much of it to technologies and autonomous actors that no one totally comprehends it all.

In other words: No one’s driving. And if we hope to retake the wheel, we’re going to have to understand, intimately, all of the ways we’ve lost control…

The internet might be the system that we interact with in the most direct and intimate ways, but most of us have little comprehension of what lies behind our finger-smudged touchscreens, truly understood by few. Made up of data centers, internet exchanges, huge corporations, tiny startups, investors, social media platforms, datasets, adtech companies, and billions of users and their connected devices, it’s a vast network dedicated to mining, creating, and moving data on scales we can’t comprehend. YouTube users upload more than 500 hours of video every minute — which works out as 82.2 yearsof video uploaded to YouTube every day. As of June 30, 2020, there are over 2.7 billion monthly active Facebook users, with 1.79 billion people on average logging on daily. Each day, 500 million tweets are sent— or 6,000 tweets every second, with a day’s worth of tweets filling a 10-million-page book. Every day, 65 billion messages are sent on WhatsApp. By 2025, it’s estimated that 463 million terabytes of data will be created each day — the equivalent of 212,765,957 DVDs…

What we’ve ended up with is a civilization built on the constant flow of physical goods, capital, and data, and the networks we’ve built to manage those flows in the most efficient ways have become so vast and complex that they’re now beyond the scale of any single (and, arguably, any group or team of) human understanding them. It’s tempting to think of these networks as huge organisms, with tentacles spanning the globe that touch everything and interlink with one another, but I’m not sure the metaphor is apt. An organism suggests some form of centralized intelligence, a nervous system with a brain at its center, processing data through feedback loops and making decisions. But the reality with these networks is much closer to the concept of distributed intelligence or distributed knowledge, where many different agents with limited information beyond their immediate environment interact in ways that lead to decision-making, often without them even knowing that’s what they’re doing…

Ceding control to vast unaccountable networks not only risks those networks going off the rails, it also threatens democracy itself. If we are struggling to understand or influence anything more than very small parts of them, this is also increasingly true for politicians and world leaders. Like the captain of the container ship, politicians and voters have less and less control over how any of these networks run. Instead they find themselves merely managing very small parts of them — they certainly don’t seem to be able to make drastic changes to those networks (which are mainly owned by private corporate industries anyway) even though they have a very direct impact on their nations’ economies, policies, and populations. To paraphrase the filmmaker Adam Curtis, instead of electing visionary leaders, we are in fact just voting for middle managers in a complex, global system that nobody fully controls.

The result of this feels increasingly like a democratic vacuum. We live in an era where voters have record levels of distrust for politicians, partly because they can feel this disconnect — they see from everyday reality that, despite their claims, politicians can’t effect change. Not really. They might not understand why, exactly, but there’s this increasing sense that leaders have lost the ability to make fundamental changes to our economic and social realities. The result is a large body of mainstream voters that wants to burn down the status quo. They want change, but don’t see politicians being able to deliver it. It feels like they’re trapped in a car accelerating at full throttle, but no one is driving.

They may not be able to do much about it, but there are mainstream politicians and elected leaders who see this vacuum for what it is — and see how it provides them with a political opportunity. Figures like Donald Trump and Boris Johnson certainly don’t believe in patching up the failures of this system — if anything, they believe in accelerating the process, deregulating, handing more power to the networks. No, for them this is a political vacuum that can be filled with blame. With finger-pointing and scapegoating. It is an opportunity to make themselves look powerful by pandering to fears, by evoking nationalism, racism, and fascism.

Donald Trump has still not conceded the 2020 election despite Joe Biden’s clear victory, and is leaning in part on the fact that the United States has a complex and sometimes opaque voting system that most of the public doesn’t understand to spread conspiracy theories about glitchy or malfeasant voting machines switching or deleting millions of votes. It’s perhaps no coincidence that some of the highest-profile figures on the right — like ex-Trump-adviser Steve Bannon or Brexit Party leader Nigel Farage — have backgrounds in the financial industry. These are political players who have seen how complicated things have become and can sense the gap in public comprehension but want to fill it with chaos and conspiracies rather than explanations…

As Tim Maughan (@TimMaughan) explains, vast systems, from automated supply chains to high-frequency trading, now undergird our daily lives — and we’re losing control of all of them: “The Modern World Has Finally Become Too Complex for Any of Us to Understand” (the first of a series of monthly columns that will “locate ways that we can try to increase our knowledge of the seemingly unknowable, as well as find strategies to counter the powerlessness and anxiety the system produces”).

* Confucius


As we contemplate complexity, we might send emergent birthday greetings to Per Bak; he was born on this date in 1948. A theoretical physicist, he is credited with developing the concept (and coining the name) of “self-organized criticality,” an explanation of how very complex phenomena (like consciousness) emerge from the interaction of simple components.


“Fools ignore complexity. Pragmatists suffer it… Geniuses remove it.”*…




World War II bomber planes returned from their missions riddled with bullet holes. The first response was, not surprisingly, to add armor to those areas most heavily damaged. However, the statistician Abraham Wald made what seemed like the counterintuitive recommendation to add armor to those parts with no damage. Wald had uniquely understood that the planes that had been shot where no bullet holes were seen were the planes that never made it back. That’s, of course, where the real problem was. Armor was added to the seemingly undamaged places, and losses decreased dramatically.

The visible bullet holes of this pandemic are the virus and its transmission. Understandably, a near-universal response to the COVID-19 pandemic has been to double down on those disciplines where we already possess deep and powerful knowledge: immunology and epidemiology. Massive resources have been directed at combating the virus by providing fast grants for disciplinary work on vaccines. Federal agencies have called for even more rapid response from the scientific community. This is a natural reaction to the immediate short-term crisis.

The damage we are not attending to is the deeper nature of the crisis—the collapse of multiple coupled complex systems.

Societies the world over are experiencing what might be called the first complexity crisis in history. We should not have been surprised that a random mutation of a virus in a far-off city in China could lead in just a few short months to the crash of financial markets worldwide, the end of football in Spain, a shortage of flour in the United Kingdom, the bankruptcy of Hertz and Niemann-Marcus in the United States, the collapse of travel, and to so much more.

As scientists who study complex systems, we conceive of a complexity crisis as a twofold event. First, it is the failure of multiple coupled systems—our physical bodies, cities, societies, economies, and ecosystems. Second, it involves solutions, such as social distancing, that involve unavoidable tradeoffs, some of which amplify the primary failures. In other words, the way we respond to failing systems can accelerate their decline.

We and our colleagues in the Santa Fe Institute Transmission Project believe there are some non-obvious insights and solutions to this crisis that can be gleaned from studying complex systems and their universal properties…

The more complicated and efficient a system gets, the more likely it is to collapse altogether.  Scientists who study complex systems offer solutions to the pandemic: “The Damage We’re Not Attending To.”

See also: “Complex Systems Theory Explains Why Covid Crushed the World.”

* Alan Perlis


As we think systemically, we might recall that it was on this date in 1835 that the New York Sun began a series of six articles detailing the discovery of civilized life on the moon.  Now known as “The Great Moon Hoax,” the articles attributed the “discovery” to Sir John Herschel, the greatest living astronmer of the day.  Herschel was initially amused, wryly noting that his own real observations could never be as exciting.  But ultimately he tired of having to answer questioners who believed the story.  The series was not discovered to be a hoax for several weeks after its publication and, even then, the newspaper did not issue a retraction.

The “ruby amphitheater” on the Moon, per the New York Sun (source)


“Democracy is the theory that the common people know what they want and deserve to get it good and hard”*…


democracy 2

It probably goes without saying at this point, but democratic institutions are experiencing something of a crisis. The last decade has seen an increasing trend toward right-wing populism around the world, from Donald Trump in the US and Jair Bolsonaro in Brazil to the rise of autocratic regimes in Poland and Hungary. These developments are particularly troubling considering they are occurring in countries ruled by nominally democratic governments, even though democracy is meant to be a bulwark against exactly this kind of political extremism.

Although political theorists have long considered democratic governments to be among the most stable forms of governance, new research by an international team of complex systems theorists that analyzes how democracies become destabilized suggests that the stability of democratic governments has been taken for granted. As detailed in a paper published this week in the European Journal of Physics, Wiesner and an international team of mathematicians, psychologists, political theorists, and philosophers focused on two features of complex social systems—feedback loops and stability—to better understand why democracies around the world are backsliding…

A team of systems experts argue that the decline of democracies is poorly understood, but that concepts from complex systems theory may offer a solution: “Complex Systems Theorists Explain Why Democracy Is Dying.”

[image above: source]

* H. L. Mencken, who also (prophetically?) observed: “As democracy is perfected, the office of president represents, more and more closely, the inner soul of the people. On some great and glorious day the plain folks of the land will reach their heart’s desire at last and the White House will be adorned by a downright moron.”


As we get down with governance, we might send carefully-researched and elegantly-written birthday greetings to Thomas Carlyle; he was born on this date in1795.  A Victorian polymath, he was an accomplished philosopher, satirical writer, essayist, translator, historian, mathematician, and teacher.  While he was an enormously popular lecturer in his time, and his contributions to mathematics earned him eponymous fame (the Carlyle circle), he may be best remembered as a historian (and champion of the “Great Man” theory of history)… and as the coiner of phrases like “the dismal science” (to describe economics)

Carlyle’s History of the French Revolution, a three volume work that assured his fame as a historian, was finished in 1836 but not published until 1837 because John Stuart Mill’s maid mistook the manuscript of Volume One for kindling.  The setback prompted Carlyle to compare himself to a man who has nearly killed himself accomplishing zero.”   But he re-wrote the first volume from scratch.

“A well-written Life is almost as rare as a well-spent one.”   – Thomas Carlyle



Adventures in Cosmology: Starting out Simply…

Why was entropy so low at the Big Bang? (source: Internet Encyclopedia of Philosophy)

Back in 2010, SUNY-Buffalo physics professor Dejan Stojkovic and colleagues made a simple– a radically simple– suggestion:  that the early universe — which exploded from a single point and was very, very small at first — was one-dimensional (like a straight line) before expanding to include two dimensions (like a plane) and then three (like the world in which we live today).

The core idea is that the dimensionality of space depends on the size of the space observed, with smaller spaces associated with fewer dimensions. That means that a fourth dimension will open up — if it hasn’t already — as the universe continues to expand.  (Interesting corollary: space has fewer dimensions at very high energies of the kind associated with the early, post-big bang universe.)

Stojkovic’s notion is challenging; but at the same time, it would help address a number of fundamental problems with the standard model of particle physics, from the incompatibility between quantum mechanics and general relativity to the mystery of the accelerating expansion of the universe.

But is it “true”?  There’s no way to know as yet.  But Stojkovic and his colleagues have devised a test using the Laser Interferometer Space Antenna (LISA), a planned international gravitational observatory, that could shed some definitive light on the question in just a few years.

Read the whole story in Science Daily, and read Stojkovic’s proposal for experimental proof in Physical Review Letters.

As we glance around for evidence of that fourth dimension, we might bid an indeterminate farewell to Ilya Prigogine, the Nobel Laureate whose work on dissipative structures, complex systems, and irreversibility led to the identification of self-organizing systems, and is seen by many as a bridge between the natural and social sciences.  He died at the Hospital Erasme in Brussels on this date in 2003.

Prigogine’s 1997 book, The End of Certainty, summarized his departure from the determinist thinking of Newton, Einstein, and Schrödinger in arguing for “the arrow of time”– and “complexity,” the ineluctable reality of irreversibility and instability.  “Unstable systems” like weather and biological life, he suggested, cannot be explained with standard deterministic models.  Rather, given their to sensitivity to initial conditions, unstable systems can only be explained statistically, probabilistically.

source: University of Texas

%d bloggers like this: