(Roughly) Daily

Posts Tagged ‘Leibniz

“We can judge our progress by the courage of our questions and the depth of our answers, our willingness to embrace what is true rather than what feels good”*…




If one takes Donald Trump and his administration to embody modern conservatism, it is easy to see in their response to the coronavirus pandemic the right’s final divorce from science and expertise. There was the case of Rick Bright, the Health and Human Services scientist who claims that the Trump administration retaliated against him when he objected to the administration’s rapid push to distribute anti-malaria drugs that were largely untested for treating coronavirus patients. There are reports that the president for months ignored his own intelligence experts’ warnings that the virus threatened our shores. There was the ongoing drama over whether Trump would fire Anthony Fauci, who has headed the National Institute of Allergy and Infectious Diseases since 1984. And there was the president’s daily passion play—the White House press briefings where he’d stand next to scientists who grimaced as he speculated that the death toll was exaggerated and that sunlight inside the body might kill the virus.

The White House’s sorry Covid-19 track record has sparked a chorus of dissent recently distilled by New York Times columnist Michelle Goldberg, who argues that the crisis displays conservatives’ long-standing “antipathy to science,” owing to “populist distrust of experts, religious rejection of information that undermines biblical literalism and efforts by giant corporations to evade regulation.” But this narrative is too pat. While something is plainly amiss in the relationship of the Trumpian right to science, it is hardly as principled as the religious objections of, say, creationists opposing evolutionary theory. Neither is it straightforwardly hostile.

What’s more curious about the response by the president and his allies to the virus is rather their embrace of scientific expertise of a sort…

The story of the crisis is not quite that of scientists who knew the answers and one political party that just wouldn’t listen to them. Rather, it is a story of fracture—of conflict and confusion, of experts earning mistrust, of each side cultivating its own class of experts to own the other’s. It is also a perverse story of how a group of self-styled truth-telling outsiders turned science’s mythology against its institutions, warping it from a tool to fight the virus into a tool to attack the establishment.

How did we get here?…

Ari Schulman (@AriSchulman) explains how a new class of outsider experts is exploiting institutional failures and destabilizing knowledge: “The Coronavirus and the Right’s Scientific Counterrevolution.”

TotH to Byrne Hobart, who notes (in his nifty newsletter, The Diff):

… this essay obviously takes a side, but it tries to be fair to the side it disagrees with. Which means there are two Straussian readings: maybe it’s an essay about how science is on one side in an American political context, and the other side only makes vague gestures towards empiricism. Alternatively, it could be an essay on how science never answers political questions, but politics corrupts science. (Why doesn’t science answer political questions? Because you can’t build a coalition out of stating the obvious, but you can build one from denying it—if your beliefs are crazy, you can spot members of the ingroup. So most scientific questions are irrelevant to politics, and when they’re relevant, politics wins by default in the short term, even if it loses long-term. To build a coherent and healthy ingroup, you need beliefs that are crazy but don’t lead to bad decisions.)

Pair with another of Hobart’s suggestions: “On Cultures That Build” (and the reasons why, the author argues. the U.S. is not one).

* Carl Sagan


As we commit to learning, we might note that today is the birthday of not one but two extraordinary mathematicians:  Gottfried Wilhelm Leibniz (1646; variants on his date of birth are due to calendar changes), the German  philosopher, scientist, mathematician, diplomat, librarian, lawyer, co-inventor, with Newton, of The Calculus, and “hero” (well, one hero) of Neal Stephenson’s Baroque Trilogy…  and  Alan Turing (1912), British mathematician, computer science pioneer (inventor of the Turing Machine, creator of “the Turing Test” and inspiration for “The Turing Prize”), and cryptographer (leading member of the team that cracked the Enigma code during WWII).

Go figure…

Turing (source: Univ. of Birmingham)

Giambattista Vico was also born on this date in 1668.  A political philosopher, rhetorician, historian, and jurist, Vico was one of the greatest Enlightenment thinkers.  Best known for the Scienza Nuova (1725, often published in English as New Science), he famously criticized the expansion and development of modern rationalism and was an apologist for classical antiquity.

He was an important precursor of systemic and complexity thinking (as opposed to Cartesian analysis and other kinds of reductionism); and he can be credited with the first exposition of the fundamental aspects of social science, though his views did not necessarily influence the first social scientists.  Vico is often claimed to have fathered modern philosophy of history (although the term is not found in his text; Vico speaks of a “history of philosophy narrated philosophically”). While he was not strictly speaking a historicist, interest in him has been driven by historicists (like Isaiah Berlin).



Written by LW

June 23, 2020 at 1:01 am

“Why should things be easy to understand?”*…




The universe is kind of an impossible object. It has an inside but no outside; it’s a one-sided coin. This Möbius architecture presents a unique challenge for cosmologists, who find themselves in the awkward position of being stuck inside the very system they’re trying to comprehend.

It’s a situation that Lee Smolin has been thinking about for most of his career. A physicist at the Perimeter Institute for Theoretical Physics in Waterloo, Canada, Smolin works at the knotty intersection of quantum mechanics, relativity and cosmology. Don’t let his soft voice and quiet demeanor fool you — he’s known as a rebellious thinker and has always followed his own path. In the 1960s Smolin dropped out of high school, played in a rock band called Ideoplastos, and published an underground newspaper. Wanting to build geodesic domes like R. Buckminster Fuller, Smolin taught himself advanced mathematics — the same kind of math, it turned out, that you need to play with Einstein’s equations of general relativity. The moment he realized this was the moment he became a physicist. He studied at Harvard University and took a position at the Institute for Advanced Study in Princeton, New Jersey, eventually becoming a founding faculty member at the Perimeter Institute.

“Perimeter,” in fact, is the perfect word to describe Smolin’s place near the boundary of mainstream physics. When most physicists dived headfirst into string theory, Smolin played a key role in working out the competing theory of loop quantum gravity. When most physicists said that the laws of physics are immutable, he said they evolve according to a kind of cosmic Darwinism. When most physicists said that time is an illusion, Smolin insisted that it’s real.

Smolin often finds himself inspired by conversations with biologists, economists, sculptors, playwrights, musicians and political theorists. But he finds his biggest inspiration, perhaps, in philosophy — particularly in the work of the German philosopher Gottfried Leibniz, active in the 17th and 18th centuries, who along with Isaac Newton invented calculus. Leibniz argued (against Newton) that there’s no fixed backdrop to the universe, no “stuff” of space; space is just a handy way of describing relationships. This relational framework captured Smolin’s imagination, as did Leibniz’s enigmatic text The Monadology, in which Leibniz suggests that the world’s fundamental ingredient is the “monad,” a kind of atom of reality, with each monad representing a unique view of the whole universe. It’s a concept that informs Smolin’s latest work as he attempts to build reality out of viewpoints, each one a partial perspective on a dynamically evolving universe. A universe as seen from the inside…

Lee Smolin explains his radical idea for how to understand an object with no exterior–imagine it built bit-by-bit from relationships between events: “How to Understand the Universe When You’re Stuck Inside of It.”

* Thomas Pynchon


As we muse on monads, we might send delightful birthday greetings to Fernando Arrabal Terán; he was born on this date in 1932.  A playwright, screenwriter, film director, novelist, and poet, Arrabal co-founded the Panic Movement with Alejandro Jodorowsky and Roland Topor (inspired by the god Pan).

Early in his career, he spent three years as a member of André Breton’s surrealist group and was a friend of Andy Warhol and Tristan Tzara.  Later (in 1990), he was elected Transcendent Satrap of the Collège de  ‘pataphysique (following such predecessors as Marcel Duchamp, Eugène Ionesco, Man Ray, Boris Vian, Dario Fo, Umberto Eco, and Jean Baudrillard).

And throughout, he was very productive: Arrabal has directed seven full-length feature films and has published over 100 plays; 14 novels; 800 poetry collections, chapbooks, and artists’ books; several essays; and his notorious “Letter to General Franco” during the dictator’s lifetime.  His complete plays have been published, in multiple languages, in a two-volume edition totaling over two thousand pages. The New York Times theater critic Mel Gussow has called Arrabal the last survivor among the “three avatars of modernism.”

200px-Fernando_Arrabal,_2012 source



Written by LW

August 11, 2019 at 1:01 am

“The camera is an instrument of detection. We photograph not only what we know, but also what we don’t know”*…


When top chemists and engineers at Harvard and MIT are preparing to reveal new research in the world’s premier journals, they call Felice Frankel.  For over two decades, Frankel has had a front-row seat at some of the biggest discoveries emerging from both ends of Cambridge, photographing experiments within the labs that created them.

Read her extraordinary story in “Photographer has front-row seat for big scientific discoveries“; and check out her work– from daisy-colored yeast colonies through rainbow-colored quantum dots to soft. flexible electronics that can be tattooed onto the skin– on her site.

* Lisette Model


As we find focus, we might remark that today is the birthday of not one but two extraordinary mathematicians:  Gottfried Wilhelm Leibniz (1646; variants on his date of birth are due to calendar changes), the German  philosopher, scientist, mathematician, diplomat, librarian, lawyer, co-inventor, with Newton, of The Calculus, and “hero” (well, one hero) of Neal Stephenson’s Baroque Trilogy…  and  Alan Turing (1912), British mathematician, computer science pioneer (inventor of the Turing Machine, creator of “the Turing Test” and inspiration for “The Turing Prize”), and cryptographer (leading member of the team that cracked the Enigma code during WWII).

Go figure…

Turing (source: Univ. of Birmingham)

Written by LW

June 23, 2015 at 1:01 am

Adventures in the Counterintuitive…

Your correspondent is headed away for a week or so, ranging more then ten times zones from home– the current limit to continuous timely posting of (R)D…  So, while regular service will resume on-or-around the 20th, a little something to keep one occupied:


Readers will recall that, on the occasion of an earlier hiatus, your correspondent wheeled out “the Monty Hall Problem” (c.f., “Riddle Me This” and “Birdbrains“).  This time, with thanks to Prof. Stan Wagon at Macalester College:

Monty Hall Takes a Vacation

Alice and Bob face three doors marked 1, 2, 3. Behind the doors are placed, randomly, a car, a key, and a goat. The couple wins the car if Bob finds the car and Alice finds the key.

First Bob (with Alice removed from the scene) will open a door; if the car is not behind it he can open a second door. If he fails to find the car, they lose. If he does find the car, then all doors are closed and Alice gets to open a door in the hope of finding the key and, if not, trying again with a second door.

Alice and Bob do not communicate except to make a plan beforehand. What is their best strategy?

Source: A. S. Landsberg (Physics, Claremont Colleges, California), Letters, Spring 2009 issue of The Mathematical Intelligencer.

The answer is here— and more nifty puzzles, here.

As we craft our own strategies, we might solve a memorial problem for Gabrielle-Émilie Le Tonnelier de Breteuil, Marquise du Châtelet, the French mathematician and physicist who is probably better known as Voltaire’s mistress; she died on this date in 1749.  Fascinated by the work of Newton and Leibniz, she dressed as a man to frequent the cafes where the scientific discussions of the time were held. Her major work was a translation of Newton’s Principia, for which Voltaire wrote the preface. The work was published a decade after her death, and was for many years the only translation of the Principia into French.

Judge me for my own merits, or lack of them, but do not look upon me as a mere appendage to this great general or that great scholar, this star that shines at the court of France or that famed author. I am in my own right a whole person, responsible to myself alone for all that I am, all that I say, all that I do. it may be that there are metaphysicians and philosophers whose learning is greater than mine, although I have not met them. Yet, they are but frail humans, too, and have their faults; so, when I add the sum total of my graces, I confess I am inferior to no one.
– Mme du Châtelet to Frederick the Great of Prussia


Waldo, found…

©2009 ~sfumato21

(via Daily What)

As we call off the dogs, we might recall that it was reputedly on this date in 1675 that Gottfried Wilhelm von Leibniz first used the “long s” as the integral symbol in calculus:

It was understood to be Leibnitz’s co-option of the Latin “summa.”

When Newton and Leibniz first published their versions of calculus (in the late 1680s), there was tremendous controversy over which mathematician (and therefore which country, England or Germany) deserved credit.  Newton derived his results first, but Leibniz published first.  The prickly Newton claimed Leibniz had stolen ideas from Newton’s unpublished notes, which Newton had shared with a few members of the Royal Society; a bitter argument ensued, dividing English-speaking mathematicians from continental mathematicians for many years– much to the detriment of English mathematics.   A careful examination of the papers of Leibniz and Newton has convinced scholars that the two arrived at their results independently, with Leibniz starting with integration; and Newton, with differentiation.  It was the symbolically-gifted Leibniz, however, who gave this new branch of mathematics its name.  Newton called his version of calculus the “the science of fluxions”…  One shudders to imagine that on one’s textbook (or in the mouths of schoolchildren…)

Reblog this post [with Zemanta]

Written by LW

October 26, 2009 at 12:01 am

%d bloggers like this: