## Posts Tagged ‘**cheese**’

## “Poets have been mysteriously silent on the subject of cheese”*…

Americans eat 35 pounds of cheese per year on average—a record amount, more than double the quantity consumed in 1975. And yet that demand doesn’t come close to meeting U.S. supply: The cheese glut is so massive (1.3 billion pounds in cold storage as of May 31) that on two separate occasions, in August and October of last year, the federal government announced it would bail out dairy farmers by purchasing $20 million worth of surplus for distribution to food pantries. Add to that a global drop in demand for dairy, plus technology that’s making cows more prolific, and you have the lowest milk prices since the Great Recession ended in 2009. Farmers poured out almost 50 million gallons of unsold milk last year—actually poured it out, into holes in the ground—according to U.S. Department of Agriculture data. In an August 2016 letter, the National Milk Producers Federation begged the USDA for a $150 million bailout…

There exists a little-known, government-sponsored marketing group called Dairy Management Inc.(DMI), whose job it is to squeeze as much milk, cheese, butter, and yogurt as it can into food sold both at home and abroad. Until recently, the “Got Milk?” campaign was its highest-impact success story. But for the past eight years, the group has been the hidden hand guiding most of fast food’s dairy hits—a kind of Illuminati of cheese—including and especially the [Taco Bell] Quesalupa…

Amid an historic glut, a secretive, government-sponsored entity is putting cheese anywhere it can stuff it: “The Mad Cheese Scientists Fighting to Save the Dairy Industry.”

* G.K. Chesterton, *Alarms and Discursions*

###

**As we opt for the stuffed crust,** we might spare a thought for Charles Elmer Hires; he died on this date in 1937. A Quaker pharmacist, introduced root beer to the world at the Centennial Exposition in Philadelphia in 1876. A committed member of the Temperance Movement, Hires saw his drink (the original formula included sarsaparilla, sasafras, ginger, pipsissewa, wintergreen, and juniper, among other flavoring ingredients) as an alternative to alcohol, and dubbed it “the temperance drink” and “the greatest health-giving beverage in the world.” Hires was inspired by root tea, but thought that “beer” would be a more attractive name to “the working class.”

## “The poets have been mysteriously silent on the subject of cheese”*…

The blue-green marbling of fungus that makes Blue (or as purists might have it, Bleu) Cheese blue is a delight to some, but a horror to others. Now Roquefort-refusers have a new reason to demur…

Until pretty recently, a big chunk of fungal species were thought to reproduce without sex–until people really started to look. It turns out, there’s a lot more sex going on in the fungal world (on the down-low) than people thought. And that includes fungi that are used to make delicious blue cheese. Jeanne Ropars and colleagues in France, the home of Roquefort cheese, looked at the genomes of the mold species used in this particular cheese to see what kind of funny business was going on in their snack of choice. They found much more diversity than could be explained by asexual reproduction. And even more telling, the genes used by fungi to find mating partners have been kept intact and functional by evolution, meaning there’s probably some sex going on…

So far, no one has actually seen this mold having sex. But it could be. It could be doing it right now. Who knows what kind of awesome super-cheese could be evolving, right under your nose?

Read the full story at **Molecular Love (and Other Facts of Life)**; and find the research paper to which it refers **here**.

* G.K. Chesterton (though this news could be just what it takes to attract poets into the mold… er, fold.)

###

**As we put away the saltines,** we might send inventive birthday greetings to David Wilkinson; he was born on this date in 1771. A mechanical engineer and machinist, Wilkinson (no known relation to your correspondent) played a key role in the development of machine tools in the U.S. (initially in the textile industry): he invented the lathe and process for cutting screws.

## Fun with numbers!…

Gary Foshee, a collector and designer of puzzles from Issaquah near Seattle walked to the lectern to present his talk. It consisted of the following three sentences: “I have two children. One is a boy born on a Tuesday. What is the probability I have two boys?”

The event was the Gathering for Gardner [see

here], a convention held every two years in Atlanta, Georgia, uniting mathematicians, magicians and puzzle enthusiasts. The audience was silent as they pondered the question.“The first thing you think is ‘What has Tuesday got to do with it?'” said Foshee, deadpan. “Well, it has everything to do with it.” And then he stepped down from the stage.

Read the full story of the conclave– held in honor of the remarkable Martin Gardner, who passed away last year, and in the spirit of his legendary “Mathematical Games” column in *Scientific American*— in * New Scientist*… and find the answer to Gary’s puzzle there– or after the smiling professor below.

“I have two children. One is a boy born on a Tuesday. What is the probability I have two boys?”… readers may hear a Bayesian echo of **the Monty Hall Problem** on which (R)D has mused before:

The first thing to remember about probability questions is that everyone finds them mind-bending, even mathematicians. The next step is to try to answer a similar but simpler question so that we can isolate what the question is really asking.

So, consider this preliminary question: “I have two children. One of them is a boy. What is the probability I have two boys?”

This is a much easier question: The way Foshee meant it is, of all the families with one boy and exactly one other child, what proportion of those families have two boys?

To answer the question you need to first look at all the equally likely combinations of two children it is possible to have: BG, GB, BB or GG. The question states that one child is a boy. So we can eliminate the GG, leaving us with just three options: BG, GB and BB. One out of these three scenarios is BB, so the probability of the two boys is 1/3.

Now we can repeat this technique for the original question. Let’s list the equally likely possibilities of children, together with the days of the week they are born in. Let’s call a boy born on a Tuesday a BTu. Our possible situations are:

* When the first child is a BTu and the second is a girl born on any day of the week: there are seven different possibilities.

* When the first child is a girl born on any day of the week and the second is a BTu: again, there are seven different possibilities.

* When the first child is a BTu and the second is a boy born on any day of the week: again there are seven different possibilities.

* Finally, there is the situation in which the first child is a boy born on any day of the week and the second child is a BTu – and this is where it gets interesting.There are seven different possibilities here too, but one of them – when both boys are born on a Tuesday – has already been counted when we considered the first to be a BTu and the second on any day of the week. So, since we are counting equally likely possibilities, we can only find an extra six possibilities here.

Summing up the totals, there are 7 + 7 + 7 + 6 = 27 different equally likely combinations of children with specified gender and birth day, and 13 of these combinations are two boys. So the answer is 13/27, which is very different from 1/3.

It seems remarkable that the probability of having two boys changes from 1/3 to 13/27 when the birth day of one boy is stated – yet it does, and it’s quite a generous difference at that. In fact, if you repeat the question but specify a trait rarer than 1/7 (the chance of being born on a Tuesday), the closer the probability will approach 1/2.

[See **UPDATE**, below]

**As we remember, with Laplace, that “the theory of probabilities is at bottom nothing but common sense reduced to calculus,”** we might ask ourselves what the odds are that on this date in 1964 the World’s Largest Cheese would be manufactured for display in the Wisconsin Pavilion at the 1964-65 World’s Fair. The 14 1/2′ x 6 1/2′ x 5 1/2′, 17-ton cheddar original– the product of 170,000 quarts of milk from 16,000 cows– was cut and eaten in 1965; but a replica was created and put on display near Neillsville, Wisconsin… next to **Chatty Belle**, the World’s Largest Talking Cow.

The replica on display (*source*)

**UPDATE:** reader Jeff Jordan writes with a critique of the reasoning used above to solve Gary Foshee’s puzzle:

For some reason, mathematicians and non-mathematicians alike develop blind

spots about probability problems when they think they already know the

answer, and are trying to convince others of its correctness. While I agree

with most of your analysis, it has one such blind spot. I’m going move

through a progression of variations on another famous conundrum, trying to

isolate these blind spots and eventually get the point you overlooked.Bertrand’s Box Paradox: Three identical boxes each have two coins inside:

one has two gold coins, one has two silver coins, and one has a silver coin

and a gold coin. You open one and pull out a coin at random, without seeing

the other. It is gold. What is the probability the other coin is the same

kind?A first approach is to say there were three possible boxes you could pick,

but the information you have rules one out. That leaves two that are still

possible. Since you were equally likely to pick either one before picking a

coin, the probability that this box is GG is 1/2. A second approach is that

there were six coins that were equally likely, and three were gold. But two

of them would have come out of the GG box. Since all three were equally

likely, the probability that this box is GG is 2/3.This appears to be a true paradox because the “same” theoretical approach –

counting equally likely cases – gives different answers. The resolution of

that paradox – and the first blind spot – is that this is an incorrect

theoretical approach to solving the problem. You never want to merely count

cases, you want to sum the probabilities that each case would produce the

observed result. Counting only works when each case that remains possible

has the same chance of producing the observed result. That is true when you

count the coins, but not when you count the boxes. The probability of

producing a gold coin from the GG box is 1, from the SS box is 0, and from

the GS box is 1/2. The correct answer is 1/(1+0+1/2)=2/3. (A second blind

spot is that you don’t “throw out” the impossible cases, you assign them a

probability of zero. That may seem like a trivial distinction, but it helps

to understand what probabilities other than 1 or 0 mean.)This problem is mathematically equivalent to the original Monty Hall

Problem: You pick Door #1 hoping for the prize, but before opening it the

host opens Door #3 to show that it is empty. Given the chance, what is the

probability you win by switching to door #2? Let D1, D2, and D3 represent

where the prize is. Assuming the host won’t open your door, and knows where

the prize is so he always opens an empty door, then the probability D2 would

produce the observed result is 1, that D3 would is 0, and that D1 is …

well, let’s say it is 1/2. Just like before, the probability D2 now has the

prize is 1/(1+0+1/2)=2/3.Why did I waffle about the value of P(D1)? There was a physical difference

with the boxes that produced the explicit result P(GS)=1/2. But here the

difference is logical (based on the location of the prize) and implicit. Do

we really know the host would choose randomly? In fact, if the host always

opens Door #3 if he can, then P(D1)=1 and the answer is 1/(1+0+1)=1/2. Or if

he always opens Door #2 if he can, P(D1)=0 and the answer is 1/(1+0+0)=1.

But if we observe that the host opened Door #2 and assume those same biases,

the results reverse.To answer the question, we must assume a value for P(D1). Assuming anything

other than P(D1)=1/2 implies a bias on the part of the host, and a different

answer if he opens Door #2. So all we can assume is P(D1)=1/2, and the

answer is again 2/3. That is also the answer if we average the results over

many games with the same host (and a consistent bias, whatever it is). The

answer most “experts” give is really that average, and it is a blind spot

that they are not using all the information they have in the individual

case.We can make the Box Paradox equivalent to this one by making the random

selection implicit. Someone looks in the chosen box, and picks out a gold

coin. The probability is 2/3 that there is another gold coin if that person

picks randomly, 1/2 if that person always prefers a gold coin, and 1 if that

person always prefers a silver one. Without knowing the preference, we can

only assume this person is unbiased and answer 2/3. Over many experiments,

it will also average out to 2/3 regardless of the bias. And this person

doesn’t even have to show the coin. If we assume he is truthful (and we can

only assume that), the answers are the same if he just says “One coin is

gold.”Finally, make a few minor changes to the Box Paradox. Change “silver” to

“bronze.” Let the coins be minted in different years, so that the year

embossed on them is never the same for any two. Add a fourth box so that one

box has an older bronze coin with a younger gold coin, and one has a younger

bronze coin with an older gold coin. Now we can call the boxes BB, BG, GB,

and GG based on this ordering. When our someone says “One coin is bronze,”

we can only assume he is unbiased in picking what kind of coin to name, and

the best answer is 1/(1+1/2+1/2+0)=1/2. If there is a bias, it could be

1/(1+1+1+0)=1/3 or 1/(1+0+0+0)=1, but we can’t assume that. Gee, this sounds

oddly familiar, except for the answer. :)The answer to all of Gary Foshee’s questions is 1/2. His blind spot is that

he doesn’t define events, he counts cases. An event a set of outcomes, not

an outcome itself. The sample space is the set of all possible outcomes. An

event X must be defined by some property such that every outcome in X has

that property, *and* every outcome with the property is in X. The event he

should use as a condition is not “this family includes a boy (born on a

Tuesday)”, it is “The father of this family chooses to tell you one of up to

two facts in the form ‘my family includes a [gender] (born on a [day]).'”

Since most fathers of two will have two different facts of that form to

choose from, Gary Foshee should have assigned a probability to each, not

merely counted the families that fit the description. The answer is then

(1+12P)/(1+26P), where P is the probability he would tell us “one is a boy

born on a Tuesday” when only one of his two children fit that description.

The only value we can assume for P is 1/2, making the answer

(1+6)/(1+13)=1/2. Not P=1 and (1+12)/(1+26)=13/27.And the blind spot that almost all experts share, is that this means the

answer to most expressions of the simpler Two Child Problem is also 1/2. It

can be different, but only if the problem statement makes two or three

points explicit:1) Whatever process led to your knowledge of one child’s gender had access

to both children’s genders (and days of birth).

2) That process was predisposed to mention boys over girls (and Tuesdays

over any other day).

3) That process would never mention facts about both children.When Gary Foshee tells you about one of his kids, #2 is not satisfied. He

probably had a choice of two facts to tell you, and we can’t assume he was

biased towards “boy born on Tuesday.” Just like Monty Hall’s being able to

choose two doors changes the answer from 1/2 to 2/3, Gary Foshee’s being

able to choose two facts changes the answer from 13/27 to 1/2. It is only

13/27 if he was forced to mention that fact, which is why that answer is

unintuitive.

Other readers are invited to contribute their thoughts.

## Activists prevail: Symmetry in all things…

Back in 2007, Drew Mokris of **Left-Handed Tunes**, wrote **an open letter** to the powers-that-be at Subway, mass market purveyors of submarine sandwiches:

Now, as **he reports in his blog**, “the war against geometric indecency” (and the resulting uneven distribution of cheesy good taste in a Subway sandwich) is won. At least in the Antipodes:

2 years, 11 months, and 13 days later, Subway has changed its policy. At least for the Australia/New Zealand area.

Heralding the victory, Drew at Left-Handed Toons writes, “Now is the time for the New Procedure. You can almost picture taking every homogenous bite. It’s okay now. Everything will always forever be okay now.”

Is this a regional test or the first stage in a worldwide phase-in? We can only pray.

And so one must.

**As we spread our mayonnaise evenly and all the way to the edges of our bread,** we might recall that it was on this date in 1993 that Mongolia held its first direct presidential election.

In 1911, Mongolia declared it’s independence from China under religious leader and king Bogd Khaan. But on his death in 1924, and with the “help” of the Soviet Union, The Mongolian People’s Republic was established. Mongolia stayed within the Soviet orbit until 1992, when Mikhail Gorbachev’s introduction of perestroika and glasnost in the USSR encouraged a peaceful Democratic Revolution in Mongolia and led to the introduction of a multi-party system and market economy.

## Quizzically yours…

In the spirit of “**Dead or Canadian?**“…

**Test your command of these two exalted domains…**

**As we reach for the spreading knife**, we might ponder another question: it was on this date in 81 CE that Roman Emperor Titus (Titus Flavius Vespasianus, son of Vespasian), then aged 41, died– after only 26 months in office (apparently of malaria; it is said that a mosquito flew up his nose and picked at his brain). Titus’ last words were, “I have made but one mistake.” To this day, no ones seems to have a clue what that was…

## Goes down smoooooth…

source: inverntorspot.com

Japanese cheese company NEEDS has developed **a new line of thirst quenchers**, a cheese drink that comes in three flavors: plain, blueberry, and yuzu citrus. Samplers report that it has a taste similar to yogurt, but with a cheesy aftertaste.

An official of NEEDS explains,

We want consumers to be more familiar with cheese, so we’ve made a liquid version that makes it more accessible. It’s also good as a salad dressing.

Find other “alternative” soft drinks **here**… as for salad dressing, it’s NEEDS or you’re on your own.

**As we scrub out our water bottles (and lest we too quickly dismiss eccentric-seeming new product ideas)**, we might recall that it was on this date in 1977 that “the Steves” (Jobs and Wozniak) offered the first real (that’s to say, commercially-produced, commercially-available) personal computer, the Apple II, for sale. (Note that some sources place the date a day or two later; Jobs isn’t talking, and Woz can’t remember…)

There is no reason anyone would want a computer in their home.

– Ken Olson, president, chairman and founder of Digital Equipment Corp., 1977.

(more such predictions,here)