# (Roughly) Daily

## “‘It’s magic,’ the chief cook concluded, in awe. ‘No, not magic,’ the ship’s doctor replied. ‘It’s much more. It’s mathematics.’*…

Michael Wendl (and here) dissects some variants of the magic separation, a self-working card trick…

Martin Gardner—one of history’s most prolific maths popularisers [see here]—frequently examined the connection between mathematics and magic, commonly looking at tricks using standard playing cards. He often discussed ‘self-working’ illusions that function in a strictly mechanical way, without any reliance on sleight of hand, card counting, pre-arrangement, marking, or key-carding of the deck. One of the more interesting specimens in this genre is a matching trick called the magic separation.

This trick can be performed with 20 cards. Ten of the cards are turned face-up, with the deck then shuffled thoroughly by both the performer and, importantly, the spectator. The performer then deals 10 cards to the spectator and keeps the remainder for herself. This can be done blindfolded to preclude tracking or counting. Not knowing the distribution of cards, our performer announces she will rearrange her own cards ‘magically’ so that the number of face-ups she holds matches the number of face-ups the spectator has. When cards are displayed, the counts do indeed match. She easily repeats the feat for hecklers who claim luck…

All is revealed: “An odd card trick,” from Chalkdust (@chalkdustmag).

* David Brin, Glory Season

###

As we conjure, we might spare a thought for Persian polymath Omar Khayyam; the mathematician, philosopher, astronomer, epigrammatist, and poet died on this date in 1131.  While he’s probably best known to English-speakers as a poet, via Edward FitzGerald’s famous translation of the quatrains that comprise the Rubaiyat of Omar Khayyam, Omar was one of the major mathematicians and astronomers of the medieval period.  He is the author of one of the most important works on algebra written before modern times, the Treatise on Demonstration of Problems of Algebra (which includes a geometric method for solving cubic equations by intersecting a hyperbola with a circle).  His astronomical observations contributed to the reform of the Persian calendar.  And he made important contributions to mechanics, geography, mineralogy, music, climatology, and Islamic theology.

Written by (Roughly) Daily

December 4, 2021 at 1:00 am

## The Widening Gyre…

TURNING and turning in the widening gyre
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;
Mere anarchy is loosed upon the world,
The blood-dimmed tide is loosed, and everywhere
The ceremony of innocence is drowned;
The best lack all conviction, while the worst
Are full of passionate intensity.

Surely some revelation is at hand;
Surely the Second Coming is at hand.
The Second Coming! Hardly are those words out
When a vast image out of Spiritus Mundi
Troubles my sight: somewhere in sands of the desert
A shape with lion body and the head of a man,
A gaze blank and pitiless as the sun,
Is moving its slow thighs, while all about it
Reel shadows of the indignant desert birds.
The darkness drops again; but now I know
That twenty centuries of stony sleep
Were vexed to nightmare by a rocking cradle,
And what rough beast, its hour come round at last,
Slouches towards Bethlehem to be born?

– “The Second Coming,” W.B. Yeats

***

As we remark that the spiral will continue we know not where, we might send eclectic birthday greetings to Persian polymath Omar Khayyam; the  philosopher, mathematician, astronomer, epigrammatist, and poet was born on this date in 1048.  While he’s probably best known to English-speakers as a poet, via Edward FitzGerald’s famous translation of the quatrains that comprise the Rubaiyat of Omar Khayyam, Omar was one of the major mathematicians and astronomers of the medieval period. He is the author of one of the most important treatises on algebra written before modern times, the Treatise on Demonstration of Problems of Algebra, which includes a geometric method for solving cubic equations by intersecting a hyperbola with a circle. His astronomical observations contributed to the reform of the Persian calendar. And he made important contributions to mechanics, geography, mineralogy, music, climatology and Islamic theology.

Written by (Roughly) Daily

May 15, 2012 at 1:01 am