Posts Tagged ‘Max Planck’
“There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.”*…
Some observations are best considered “interesting, if true”; some, a la Karl Popper, “true, until false”… Consider this very recent paper in Nature…
Theories of scientific and technological change view discovery and invention as endogenous processes, wherein previous accumulated knowledge enables future progress by allowing researchers to, in Newton’s words, ‘stand on the shoulders of giants.’ Recent decades have witnessed exponential growth in the volume of new scientific and technological knowledge, thereby creating conditions that should be ripe for major advances. Yet contrary to this view, studies suggest that progress is slowing in several major fields. Here, we analyse these claims at scale across six decades, using data on 45 million papers and 3.9 million patents from six large-scale datasets, together with a new quantitative metric—the CD index—that characterizes how papers and patents change networks of citations in science and technology. We find that papers and patents are increasingly less likely to break with the past in ways that push science and technology in new directions. This pattern holds universally across fields and is robust across multiple different citation- and text-based metrics. Subsequently, we link this decline in disruptiveness to a narrowing in the use of previous knowledge, allowing us to reconcile the patterns we observe with the ‘shoulders of giants’ view. We find that the observed declines are unlikely to be driven by changes in the quality of published science, citation practices or field-specific factors. Overall, our results suggest that slowing rates of disruption may reflect a fundamental shift in the nature of science and technology.
The full paper: “Papers and patents are becoming less disruptive over time” @Nature
One notes that the quote above– from Lord Kelvin, at the turn of the twentieth century– immediately preceded a couple of decades in which physics was radically redefined and advanced by Planck, Einstein, Bohr, et al. (In fairness to Kelvin, consider this suggestion that his point was more subtle.) As we look forward, we might ponder the ways in which the reorganization of disciplines, the rise of research in other cultures (less constrained by the mores of “conventional” research), the use of AI, and/or some as yet unknown dynamic could challenge the phenomenon– “a narrowing in the use of previous knowledge”– to which the authors attribute diminishing disruption.
[Source of the image above]
* Lord Kelvin, in an address to the the Royal Institution in April of 1900
###
As we ponder progress, we might send advanced birthday greetings to Wilhelm Wien; he was born on this date in 1864. A physicist, his work helped move past Kelvin’s log-jam. In 1893, he used theories about heat and electromagnetism to deduce Wien’s displacement law, which calculates the emission of a blackbody (a surface that absorbs all radiant energy falling on it) at any temperature from the emission at any one reference temperature. His colleague Max Planck colaborated with Wien, then extended the thinking in what we now know as Planck’s law, which led to the development of quantum theory.
Wien received the 1911 Nobel Prize for his work on heat radiation.
Just before Kelvin’s speech (in 1898) Wien identified a positive particle equal in mass to the hydrogen atom– what we now know as a proton. Wien, in the techniques he used, laid the foundation of mass spectrometry.
“A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it”*…
A curious thing happened at the end of the 19th century and the dawning of the 20th. As European and American industries became increasingly confident in their methods of invention and production, scientists made discovery after discovery that shook their understanding of the physical world to the core. “Researchers in the 19th century had thought they would soon describe all known physical processes using the equations of Isaac Newton and James Clerk Maxwell,” Adam Mann writes at Wired. But “the new and unexpected observations were destroying this rosy outlook.
These observations included X-rays, the photoelectric effect, nuclear radiation and electrons; “leading physicists, such as Max Planck and Walter Nernst believed circumstances were dire enough to warrant an international symposium that could attempt to resolve the situation.” Those scientists could not have known that over a century later, we would still be staring at what physicist Dominic Walliman calls the “Chasm of Ignorance” at the edge of quantum theory. But they did initiate “the quantum revolution” in the first Solvay Council, in Brussels, named for wealthy chemist and organizer Ernest Solvay.
“Reverberations from this meeting are still felt to this day… though physics may still sometimes seem to be in crisis” writes Mann (in a 2011 article just months before the discovery of the Higgs boson). The inaugural meeting kicked off a series of conferences on physics and chemistry that have continued into the 21st century. Included in the proceedings were Planck, “often called the father of quantum mechanics,” Ernest Rutherford, who discovered the proton, and Heike Kamerlingh-Onnes, who discovered superconductivity.
Also present were mathematician Henri Poincaré, chemist Marie Curie, and a 32-year-old Albert Einstein, the second youngest member of the group. Einstein described the first Solvay conference (1911) in a letter to a friend as “the lamentations on the ruins of Jerusalem. Nothing positive came out of it.” The ruined “temple,” in this case, were the theories of classical physics, “which had dominated scientific thinking in the previous century.” Einstein understood the dismay, but found his colleagues to be irrationally stubborn and conservative…
For more– and a complete list of attendees in the photo above: ““The Most Intelligent Photo Ever Taken”: The 1927 Solvay Council Conference, Featuring Einstein, Bohr, Curie, Heisenberg, Schrödinger & More.”
* Max Planck (second from the left in the first row of the photo above)
###
As we ponder paradigms, we might send insightful birthday greetings to Edward Williams Morley; he was born on this date in 1838. A chemist who was first to precisely determine the atomic weight of oxygen, he is probably best remembered for his collaboration with the physicist Albert A. Michelson. In what we call the Michelson–Morley experiment (actually a number of experiments conducted between April and July in 1887), they attempted to detect the luminiferous aether, a supposed medium permeating space that was thought to be the carrier of light waves; their method was the very precise measurement of the speed of light (in various directions, and at different times of the year, as the Earth revolved in its orbit around the Sun). Michelson and Morley always found that the speed of light did not vary at all depending on the direction of measurement, or the position of the Earth in its orbit– the so-called “null result.”
Neither Morley nor Michelson ever considered that these null results disproved the hypothesis of the existence of “luminiferous aether.” But other scientists began to suspect that they did. Almost two decades later the results of the Michelson–Morley experiments supported Albert Einstein’s strong postulate (in 1905) that the speed of light is a constant in all inertial frames of reference as part of his Special Theory of Relativity.
“I’ve developed a new philosophy. I only dread one day at a time.”*…
Starting [last] month, the very talented Adam Koford, the creator of Laugh-Out-Loud Cats webcomic, started posting these wonderful bootleg Peanuts comics to his Twitter account, and continued almost every day since.
Loose and sketchy, they capture the essence of Charles Schultz’ Peanuts so well: sweet and sad, combining childlike wonder and existential dread. As he went on, they started evolving a unique style of their own, distinct from the Peanuts characters but still recognizable….
Via Andy Baio‘s wonderful site Waxy. The “Peanuts” panels are strewn through Adam’s Twitter feed; as a gift to us all, Baio collected a bunch of them into a Twitter “Moment.”
Enjoy… and don’t mention it to the Schultz estate.
* Charlie Brown
###
As we ruminate on reality, we might recall that today’s a relative-ly good day for it, as it was on this date in 1900 that German physicist Max Planck presented and published his study of the effect of radiation on a “black-body” substance (introducing what we’ve come to know as the Planck Postulate), and the quantum theory of modern physics– and for that matter, Twentieth Century modernity– were born.
Planck study demonstrated that in certain situations energy exhibits the characteristics of physical matter– something unthinkable at the time, when energy was thought to exist only in wave form– and suggested that energy exists in discrete packets, which he called “quanta”… thus laying the foundation on which he, Einstein, Bohr, Schrodinger, Dirac, and others built our modern understanding.
“There is a size at which dignity begins”*…

The spectrometer for the KATRIN experiment, as it works its way through the German town of Eggenstein-Leopoldshafen in 2006 en route to the nearby Karlsruhe Institute of Technology
Isaac Asimov dubbed neutrinos “ghost particles.” John Updike immortalized them in verse. They’ve been the subject of several Nobel Prize citations, because these weird tiny particles just keep surprising physicists. And now we have a much better idea of the upper limit of what their rest mass could be, thanks to the first results from the Karlsruhe Tritium Neutrino experiment (KATRIN) in Germany. Leaders from the experiment announced their results last week at a scientific conference in Japan and posted a preprint to the physics arXiv.
“Knowing the mass of the neutrino will allow scientists to answer fundamental questions in cosmology, astrophysics, and particle physics, such as how the universe evolved or what physics exists beyond the Standard Model,” said Hamish Robertson, a KATRIN scientist and professor emeritus of physics at the University of Washington…
Physicists get small: “Weighing in: Physicists cut upper limit on neutrino’s mass in half.”
* Thomas Hardy, “Two on a Tower”
###
As we step onto the scales, we might spare a thought for Max Karl Ernst Ludwig Planck; he died on this date in 1947. A theoretical physicist, he is best remembered as the originator of quantum theory. It was his discovery of energy quanta that won him the Nobel Prize in Physics in 1918.
“Humanize your talk, and speak to be understood”*…
Personification is weird…yet entirely natural. It’s the odd practice of pretending things are people. When we personify, we apply human attributes to inanimate objects, to nature, to animals, or to abstract concepts, sometimes complete with dramatic stories about their social roles, emotions and intentions. We can observe this linguistically through features like unexpected pronoun use or certain animate verbs and adjectives that are usually only applied to people. A common example is how ships and other vessels traditionally have a feminine gender in English (even if the ship happens to be a “man-of-war“)… There’s a strange empathy in words like “she is alone” applied to an object that can’t possibly have a sense of loneliness. This isn’t the artifice of poetry, but everyday language. On the face of it, the concept of personification seems pretty crazy, the stuff of fantasy and magical thinking…
You might think, like many a respectable scientist, that it has no place in our earth logic, because not only is it not real, it is objectively false (and therefore unscientific), since inanimate objects do not have feelings or intentions (and if animals do, we can’t possibly know for sure). Yet personification is not only wildly popular in language use (even if we don’t always notice it), it’s a fascinating psychological phenomenon that reveals a lot about social cognition and how we might understand the world…
How the way we talk about the things around us both shapes and reflects our understanding of the world: “Personification Is Your Friend: The Language of Inanimate Objects.”
* Moliere
###
As we muse on anthropomorphic metaphor and meaning, we might recall that today’s a relative-ly good day for it, as it was on this date in 1900 that German physicist Max Planck presented and published his study of the effect of radiation on a “black-body” substance (introducing what we’ve come to know as the Planck Postulate), and the quantum theory of modern physics– and for that matter, Twentieth Century modernity– were born.
Planck study demonstrated that in certain situations energy exhibits the characteristics of physical matter– something unthinkable at the time– and suggested that energy exists in discrete packets, which he called “quanta”… thus laying the foundation on which he, Einstein, Bohr, Schrodinger, Dirac, and others built our modern understanding.
You must be logged in to post a comment.