(Roughly) Daily

Posts Tagged ‘COVID-19

“Fools ignore complexity. Pragmatists suffer it… Geniuses remove it.”*…

 

complexity

 

World War II bomber planes returned from their missions riddled with bullet holes. The first response was, not surprisingly, to add armor to those areas most heavily damaged. However, the statistician Abraham Wald made what seemed like the counterintuitive recommendation to add armor to those parts with no damage. Wald had uniquely understood that the planes that had been shot where no bullet holes were seen were the planes that never made it back. That’s, of course, where the real problem was. Armor was added to the seemingly undamaged places, and losses decreased dramatically.

The visible bullet holes of this pandemic are the virus and its transmission. Understandably, a near-universal response to the COVID-19 pandemic has been to double down on those disciplines where we already possess deep and powerful knowledge: immunology and epidemiology. Massive resources have been directed at combating the virus by providing fast grants for disciplinary work on vaccines. Federal agencies have called for even more rapid response from the scientific community. This is a natural reaction to the immediate short-term crisis.

The damage we are not attending to is the deeper nature of the crisis—the collapse of multiple coupled complex systems.

Societies the world over are experiencing what might be called the first complexity crisis in history. We should not have been surprised that a random mutation of a virus in a far-off city in China could lead in just a few short months to the crash of financial markets worldwide, the end of football in Spain, a shortage of flour in the United Kingdom, the bankruptcy of Hertz and Niemann-Marcus in the United States, the collapse of travel, and to so much more.

As scientists who study complex systems, we conceive of a complexity crisis as a twofold event. First, it is the failure of multiple coupled systems—our physical bodies, cities, societies, economies, and ecosystems. Second, it involves solutions, such as social distancing, that involve unavoidable tradeoffs, some of which amplify the primary failures. In other words, the way we respond to failing systems can accelerate their decline.

We and our colleagues in the Santa Fe Institute Transmission Project believe there are some non-obvious insights and solutions to this crisis that can be gleaned from studying complex systems and their universal properties…

The more complicated and efficient a system gets, the more likely it is to collapse altogether.  Scientists who study complex systems offer solutions to the pandemic: “The Damage We’re Not Attending To.”

See also: “Complex Systems Theory Explains Why Covid Crushed the World.”

* Alan Perlis

###

As we think systemically, we might recall that it was on this date in 1835 that the New York Sun began a series of six articles detailing the discovery of civilized life on the moon.  Now known as “The Great Moon Hoax,” the articles attributed the “discovery” to Sir John Herschel, the greatest living astronmer of the day.  Herschel was initially amused, wryly noting that his own real observations could never be as exciting.  But ultimately he tired of having to answer questioners who believed the story.  The series was not discovered to be a hoax for several weeks after its publication and, even then, the newspaper did not issue a retraction.

The “ruby amphitheater” on the Moon, per the New York Sun (source)

 

“Not with a bang, but with a whimper”*…

 

death

Death Table from Tuberculosis in the United States, prepared for the International Congress on Tuberculosis, September 21 to October 12, 1908. Image: U.S. National Library of Medicine

 

Recent history tells us a lot about how epidemics unfold, how outbreaks spread, and how they are controlled. We also know a good deal about beginnings—those first cases of pneumonia in Guangdong marking the SARS outbreak of 2002–3, the earliest instances of influenza in Veracruz leading to the H1N1 influenza pandemic of 2009–10, the outbreak of hemorrhagic fever in Guinea sparking the Ebola pandemic of 2014–16. But these stories of rising action and a dramatic denouement only get us so far in coming to terms with the global crisis of COVID-19. The coronavirus pandemic has blown past many efforts at containment, snapped the reins of case detection and surveillance across the world, and saturated all inhabited continents. To understand possible endings for this epidemic, we must look elsewhere than the neat pattern of beginning and end—and reconsider what we mean by the talk of “ending” epidemics to begin with…

Contrary to hopes for a tidy conclusion to the COVID-19 pandemic, history shows that outbreaks of infectious disease often have much murkier outcomes—including simply being forgotten about, or dismissed as someone else’s problem: “How Epidemics End.”

* T. S. Eliot, “The Hollow Men”

###

As we contemplate the end, we might send insightful birthday greetings to Nettie Maria Stevens; she was born on this date in 1861.  A geneticist– and one of the first American women to achieve recognition for her contributions to scientific research– she built on the rediscovery of Mendel‘s paper on genetics (in 1900) with work that identified the mechanism of sexual selection: its determination by the single difference between two classes of sperm—the presence or absence of (what we now call) an X chromosome.

220px-Nettie_Stevens source

 

%d bloggers like this: