(Roughly) Daily

Posts Tagged ‘micro-biology

“How is it that you keep mutating and can still be the same virus?”*…

Thale cress (Arabidopsis thaliana)

A common plant has yielded insights that question a fundamental assumption in biology– more specifically, an assumption about the mechanism of natural selection…

A simple roadside weed may hold the key to understanding and predicting DNA mutation, according to new research from University of California, Davis, and the Max Planck Institute for Developmental Biology in Germany.

The findings, published today in the journal Nature, radically change our understanding of evolution and could one day help researchers breed better crops or even help humans fight cancer.

Mutations occur when DNA is damaged and left unrepaired, creating a new variation. The scientists wanted to know if mutation was purely random or something deeper. What they found was unexpected.

“We always thought of mutation as basically random across the genome,” said Grey Monroe, an assistant professor in the UC Davis Department of Plant Sciences who is lead author on the paper. “It turns out that mutation is very non-random and it’s non-random in a way that benefits the plant. It’s a totally new way of thinking about mutation.”

Knowing why some regions of the genome mutate more than others could help breeders who rely on genetic variation to develop better crops. Scientists could also use the information to better predict or develop new treatments for diseases like cancer that are caused by mutation.

“Our discoveries yield a more complete account of the forces driving patterns of natural variation; they should inspire new avenues of theoretical and practical research on the role of mutation in evolution,” the paper concludes.

Evolutionary theory revised? A new study challenges the received wisdom that that DNA mutations are random. Read the underlying paper here.

* Chuck Palahniuk, Invisible Monsters

###

As we contemplate change, we might send micro-biological birthday greetings to Ruth Sager; she was born on this date in 1918. A geneticist, she had two careers in science.

In the 1950s and 1960s, she pioneered the field of cytoplasmic genetics by discovering transmission of genetic traits through chloroplast DNA, the first known example of genetics not involving the cell nucleus. The academic community did not acknowledge the significance of her contribution until after the second wave of feminism in the 1970s.

Then, in the early 1970s, she moved into cancer genetics (with a specific focus on breast cancer); she proposed and investigated the roles of tumor suppressor genes.

source

%d bloggers like this: