(Roughly) Daily

“Only time (whatever that may be) will tell”*…

Scientists have measured the shortest unit of time ever: the time it takes a light particle to cross a hydrogen molecule.

That time, for the record, is 247 zeptoseconds. A zeptosecond is a trillionth of a billionth of a second, or a decimal point followed by 20 zeroes and a 1.

Previously, researchers had dipped into the realm of zeptoseconds; in 2016, researchers reporting in the journal Nature Physics used lasers to measure time in increments down to 850 zeptoseconds. This accuracy is a huge leap from the 1999 Nobel Prize-winning work that first measured time in femtoseconds, which are millionths of a billionths of seconds…

* Stephen Hawking, A Brief History of Time

###

As we acknowledge alacrity, we might spare a thought for James Clerk Maxwell; he died on this date in 1879.  A mathematician and and physicist, he calculated (circa 1862) that the speed of propagation of an electromagnetic field is approximately that of the speed of light– kicking off his work in uniting electricity, magnetism, and light… that’s to say, formulating the classical theory of electromagnetic radiation, which is considered the “second great unification in physics” (after the first, realized by Isaac Newton). Maxwell laid the foundation for modern physics, starting the search for radio waves and paving the way for such fields as special relativity and quantum mechanics.  In the Millennium Poll – a survey of the 100 most prominent physicists at the turn of the 21st century – Maxwell was voted the third greatest physicist of all time, behind only Newton and Einstein.

Written by (Roughly) Daily

November 5, 2020 at 1:01 am

Posted in Uncategorized

“The information revolution came without an instruction manual”*…

In my graduate seminar we’ve recently been thinking a bit about machines. Given that our focus has been on the 19th Century, attention has been directed toward ergodic machines (from the root ergon meaning work). Ergodic machines are machines that run on heat and energy. Such machines are essentially mechanical in nature. They deal with basic physical mechanics like levers and pulleys, and questions of mass, weight, and counter-balance. Ergodic machines adhere to the laws of motion and inertia, the conservation of energy, and the laws of thermodynamics governing heat, pressure, and energy…

Still, ergodic machines do not account for all machines. Informatic machines, those devices dominating contemporary life, have in many ways taken over from their 19th-century counterparts. Informatic machines have physical bodies, of course, and they frequently require electricity or other forms of power to operate. However the essence of the informatic machine is not found in motion, unrest, heat, or energy. The essence of the informatic machine is found in form, not energy or presence. From the perspective of philosophy, computers are therefore quite classical, even conservative. They follow that most basic law of Western idealism, that the formal determines the physical

The anti-computer has yet to be invented. But traces of it are found everywhere. Even Bitcoin, that most miserable invention, relies on an anti-computational infrastructure. In order to mine coins, one must expend energy. Hence these twenty-first-century machines are yoked to a nineteenth-century mandate: burn fuel to release value. Bitcoin may run on a computer but it is anti-computational at heart. Bitcoin only works because it is grounded in an anti-computer (energy). It is thus a digital machine made subsidiary to an analog foundation, a twenty-first-century future tied to a nineteenth-century past.

The encryption algorithms at the heart of Bitcoin are anti-computational as well. Cryptography deploys form as a weapon against form. Such is the magic of encryption. Encryption is a kind of structure that makes life difficult for other competing structures. Encryption does not promote frictionlessness, on the contrary it produces full and complete friction at all levels. Not the quotidian friction of everyday life, but a radical friction frustrating all expression. What used to be a marginal activity practiced by hackers — cracking password hashes — is now the basis of an entire infrastructure. Earn a buck by cracking hashes using “brute force.” Turn your computer into an anti-computer.

A friend of Marshall McLuhan’s, Father John Culkin, SJ, a Professor of Communication at Fordham University, observed that “we shape our tools and then our tools shape us” (though the quote is often attributed to McLuhan, who may in fact have inspired it).   Alexander R. Galloway ponders the tools that dominate our lives these days: “Anti-Computer.”

* “The central paradox of the machines that have made our lives so much brighter, quicker, longer and healthier is that they cannot teach us how to make the best use of them; the information revolution came without an instruction manual”  — Pico Iyer

###

As we muse on machines, we might spare a thought for James Clerk Maxwell; he died on this date in 1879.  a mathematician and and physicist, his work in uniting electricity, magnetism, and light– that’s to say, formulating the classical theory of electromagnetic radiation— is considered the “second great unification in physics” (after the first, realized by Isaac Newton), and laid the foundation for modern physics, starting the search for radio waves and paving the way for such fields as special relativity and quantum mechanics.  In the millennium poll – a survey of the 100 most prominent physicists at the turn of the 21st century – Maxwell was voted the third greatest physicist of all time, behind only Newton and Einstein.

Written by (Roughly) Daily

November 5, 2018 at 2:01 am

Posted in Uncategorized