(Roughly) Daily

“Why should things be easy to understand?”*…

 

Dunning-Kruger Effect

The less competent an individual is at a specific task, the more likely they are to over-estimate their ability at that task.

Sure, ignorance is bliss. But being convinced you’re an expert at something, even though actually you’re ignorant — DAYUM — that’s the the best thing ever. People with poor abilities at some task can sometimes mistakenly believe that they are much more skilled at the task then they actually are. Examples of this are everywhere, from people who have never played a sport before, but just know they’ll be great at it, to people who’ve had one semester of french back in high school, but have no doubt that when the plane lands in Paris they’ll be able to talk like a native…

More on this all-too-timely phenomenon here— one the regular entries in Chris Spurgeon‘s marvelous newsletter, The Laws of the Universe, a regular series of postings…

Every once in a while — very rarely in the grand scheme of things — someone figures out how a tiny, tiny bit of the universe works. Through this newsletter I celebrate these discoveries, and the people they’re named after.

These tiny discoveries are known by many terms — laws, rules, constants, principles, theorems, effects. And they pop up in all areas of human endeavors — science of course, but also law and politics, arts and entertainment, popular culture and everyday life. Hubble’s Law, Dunbar’s Number, the Barbara Streisand Effect, Murphy’s Law — they’re all fair game. The only rules are:

1) the law must be named for someone, and
2) the law must shine a tiny bit of light onto one tiny bit of how the universe operates.

Browse the archive (and sign up) here.

* Thomas Pynchon

###

As we revel in rules, we might spare a thought for Gregor Johann Mendel; he died on this date in 1884.  After a profoundly-unpromising start, Mendel became a scientist, Augustinian friar, and abbot of St. Thomas’ Abbey in Brno, Moravia (today’s Czech Republic).  A botanist and plant experimenter, he was the first to lay the mathematical foundation of the science of genetics (of which he is now consider the “Father”).  Over the period 1856-63, Mendel grew and analyzed over 28,000 pea plants.  He carefully studied for each their height, pod shape, pod color, flower position, seed color, seed shape and flower color– and from those observations derived two very important generalizations, known today as the Laws of Heredity.

 source

 

Written by LW

January 6, 2017 at 1:01 am

%d bloggers like this: