(Roughly) Daily

“The greatest value of a picture is when it forces us to notice what we never expected to see”*…

Detail from Richard Waller’s “Tabula colorum physiologica …” [Table of physiological colours], from Philosophical Transactions, 1686 — Source.

One of the most demanding challenges for early modern scientists was devising how best to visually portray their discoveries to the public. In the absence of any sort of technology for automatic visualisation, like cameras or scanners, the sixteenth- and seventeenth-century natural philosopher had to rely on drawings and subsequently woodcuts, etchings, or engravings to turn an experimental finding into a reproducible and publicly accessible demonstration. This was a laborious, expensive, time-consuming, and often problematic operation. Negotiated between several parties involved in the world of image-making, such as draughtsmen, engravers, and printers, the results were inevitably compromises between the intentions of the researcher and the possibilities of the printing press. For example, what a drawing could express with shading, washing, and chromatic nuances, printed illustrations could only approximate through a binary system of black and white, resulting from the pressure of an inked copper plate against a page.

The problem of efficient imaging was particularly felt during the early years of the Royal Society, a scientific institution founded in London in the early 1660s and today still regarded as one of the most prestigious institutions of scientific research in the world. In its early decades of activity, the Royal Society established itself as one of the central forces of the Scientific Revolution, with renowned members such as Robert Boyle and Isaac Newton. Members of the Society used to meet on a weekly basis to discuss ongoing research on a variety of subjects, such as physics, mathematics, biology, astronomy, mechanics, geography, and antiquarianism.

Soon after its foundation, the Royal Society sought new ways to increase visibility and maximise its public reach. From this emerged the Philosophical Transactions, a monthly peer-reviewed journal, the first of its kind, featuring extracts from the Royal Society’s weekly research meetings. Founded in 1665 by the Society’s Secretary Henry Oldenburg and still published to this day, the Transactions are regarded as the first and longest-running scientific journal in history, as contributions were the result of original explorative studies into natural and mechanical matters informed by the Society’s culture of experiment — part of what today we generally call science.

The Transactions were printed in small quarto format (about 17x22cm) with up to about a dozen articles per issue and could be purchased for the price of one shilling, about £5 today. The journal was a pioneering learned publication, with exceptional frequency and aimed at a diverse public of curious researchers. As such, especially in the early years, its contributors were often preoccupied with how best to communicate their ideas and discoveries through the immediacy of mass-producible visual media. A closer look into a selection of these articles demonstrates the extent to which natural philosophers were prepared to re-invent the production and consumption of images with new and often odd strategies for representing the world. This was a process of endless hands-on experimentation, often pushing beyond the traditional confines of the printing house…

From infographics to digital renders, today’s scientists have ready access to a wide array of techniques to help visually communicate their research. It wasn’t always so: “‘More Lively Counterfaits’– Experimental Imaging at the Birth of Modern Science.”

* John Tukey


As we “show don’t tell,” we might spare a thought for Earle Dickson; he died on this date in 1961.  Dickson, concerned that his wife, Josephine Knight, often cut herself while doing housework and cooking, devised a way that she could easily apply her own dressings.  He prepared ready-made bandages by placing squares of cotton gauze at intervals along an adhesive strip and covering them with crinoline.  In the event, all his wife had to do was cut off a length of the strip and wrap it over her cut.  Dickson, who worked as a cotton buyer at Johnson & Johnson, took his idea to his employer… and the Band-Aid was born.


%d bloggers like this: