(Roughly) Daily

Posts Tagged ‘Physics

“Mathematics is the art of giving the same name to different things”*…

 

A few years back, 12 million of us clicked over to watch the “Pachelbel Rant” on YouTube. You might remember it. Strumming repetitive chords on his guitar, comedian Rob Paravonian confessed that when he was a cellist, he couldn’t stand the Pachelbel Canon in D. “It’s eight quarter notes that we repeated over and over again. They are as follows: D-A-B-F♯-G-D-G-A.” Pachelbel made the poor cellos play this sequence 54 times, but that wasn’t the real problem. Before the end of his rant, Paravonian showed how this same basic sequence has been used everywhere from pop (Vitamin C: “Graduation”) to punk (Green Day: “Basket Case”) to rock (The Beatles: “Let It Be”).

This rant emphasized what music geeks already knew—that musical structures are constantly reused, often to produce startlingly different effects. The same is true of mathematical structures in physical theories, which are used and reused to tell wildly dissimilar stories about the physical world. Scientists construct theories for one phenomena, then bend pitches and stretch beats to reveal a music whose progressions are synced, underneath it all, in the heart of the mathematical deep.

Eugene Wigner suggested a half-century ago that this “unreasonable effectiveness” of mathematics in the natural sciences was “something bordering on the mysterious,” but I’d like to suggest that reality may be more mundane. Physicists use whatever math tools they’re able to find to work on whatever problems they’re able to solve. When a new song comes on, there’s bound to be some overlap in the transcription. These overlaps help to bridge mutations of theory as we work our way toward a lead sheet for that universal hum…

Read the harmonious whole at “How Physics is Like Three-Chord Rock.”

* Henri Poincare

###

As we hum the tune eternal, we might send astronomical birthday greetings to Allan Rex Sandage; he was born on this date in 1926.  An astronomer, he spent his career first at the Palomar Observatory, then at the Carnegie Observatory in Pasadena, where at the outset, he was a research assistant to Edwin Hubble, whose work Sandage continued after Hubble’s death.  Sandage was hugely influential on his field; he is probably best remembered for determining the first reasonably accurate value for the Hubble constant (there ate those chords again) and the age of the universe– and for discovering the first quasar (again, those chords).

 source

 

Written by LW

June 18, 2014 at 1:01 am

“Time and space are modes by which we think and not conditions in which we live”*…

 

email readers click here for video

What is space?  Three contenders for the theory of everything converge on a single very big idea– that our universe was born in the instant when nothing and nowhere were joined.

Read more at “Goodbye big bang, hello big silence” (summary; full text requires subscription).

* Albert Einstein

###

As we ruminate on relativity, we might spare a thought for Thomas Samuel Kuhn; he died on this date in 1996.  A physicist, historian, and philosopher of science , Kuhn believed that scientific knowledge didn’t advance in a linear, continuous way, but via periodic “paradigm shifts.”  Karl Popper had approached the same territory in his development of the principle of “falsification” (to paraphrase, a theory isn’t false until it’s proven true; it’s true until it’s proven false).  But while Popper worked as a logician, Kuhn worked as a historian.  His 1962 book The Structure of Scientific Revolutions made his case; and while he had– and has– his detractors, Kuhn’s work has been deeply influential in both academic and popular circles (indeed, the phrase “paradigm shift” has become an English-language staple).

 source

 

Written by LW

June 17, 2014 at 1:01 am

“There are some things so serious you have to laugh at them”*…

 

They have just found the gene for shyness. They would have found it earlier, but it was hiding behind two other genes.
Stuart Peirson, senior research scientist, Oxford University Nuffield Laboratory of Ophthalmology

Other howlers at The Observer’sScientists Tell Us Their Favourite Jokes.”

[cartoon source]

* Niels Bohr

###

As we titrate out titters, we might send birthday yucks to Stephen William Hawking CH CBE FRS FRSA; he was born on this date in 1942.  A theoretical physicist and cosmologist, he is probably best known in his professional circles for his work with Roger Penrose on gravitational singularity theorems in the framework of general relativity, for his theoretical prediction that black holes emit radiation (now called Hawking radiation), and for his support of the many-worlds interpretation of quantum mechanics.

But Hawking is more broadly known as a popularizer of science.  His A Brief History of Time stayed on the British Sunday Times best-seller list for over four years (a record-breaking 237 weeks), and has sold over 10 million copies worldwide.

“We have this one life to appreciate the grand design of the universe, and for that, I am extremely grateful.”

 source

 

 

Written by LW

January 8, 2014 at 1:01 am

Ways of seeing…

 

Photographer Víctor Enrich‘s NHDK project involves digitally reconfiguring the same building in Munich in 88 different “poses”…

The Barcelona-based artist is known for his “reconstructive” interpretations of architecture around the world (c.f., e.g., his images of  Tel Aviv shot back in 2010).  See more of Enrich‘s NHDK project at Colossal.

###

As we consider different perspectives, we might send terrifyingly (and at the same time, amusingly) insightful birthday greetings to Edwin Abbott Abbott; he was born on this date in 1838.  A schoolmaster and theologian, Abbott is best remembered as the author of the remarkable novella Flatland: A Romance of Many Dimensions (1884).  Writing pseudonymously as “A Square,” Abbott used the fictional two-dimensional world of Flatland to offer pointedly-satirical observations on the social hierarchy of Victorian culture. But the work has survived– and inspired legions of mathematicians and science fiction writers– by virtue of its fresh and accessible examination of dimensionality.  Indeed, Flatland was largely ignored on its original publication; but it was re-discovered after Einstein’s General Theory of Relativity– which posits a fourth dimension– was introduced; in a 1920 letter to Nature, Abbott is called a prophet for his intuition of the importance of time to explain certain phenomena.

 source

 

Written by LW

December 20, 2013 at 1:01 am

Never the Twain shall meet (a turkey)…

 

Pencil sketch of Mark Twain
by Samuel Johnson Woolf, 1906.

With an eye to the digestive challenges that many readers will likely be facing tomorrow, (R)D will be on holiday hiatus, to resume on Black Friday…  In the meantime, a Thanksgiving gift:  Mark Twain’s “Hunting the Deceitful Turkey.”

When I was a boy my uncle and his big boys hunted with the rifle, the youngest boy Fred and I with a shotgun—a small single-barrelled shotgun which was properly suited to our size and strength; it was not much heavier than a broom. We carried it turn about, half an hour at a time…

Readers will find links here to download the full story (as a pdf) or to read online at the Library of America’s site… and will realize that the real gift here is the link on that page to subscribe to their wonderful “Story of the Week” list– a free, downloadable short story, like this one, selected each week from the extraordinary trove of treasures in their stock.  The perfect post-prandial pleasure!

###

As we prepare to loosen our belts, we might send safe and satisfied birthday greetings to Jesse Ernest Wilkins, Jr.; he was born on this date in 1923. The youngest ever undergraduate at the University of Chicago when he was admitted at the age of 13, he went on to earn his doctorate there, and thus to become the first African-American PhD in mathematics.  He went on to earn both Masters and PhD degrees in mechanical engineering at NYU.

Wilkins was involved in the Manhattan Project during World War II, then developed mathematical models to calculate the amount of gamma radiation absorbed by any given material (a technique of calculating radiative absorption still widely used among researcher in space and nuclear science).  He then developed the radiation shielding used against the gamma radiation emitted during electron decay of the Sun and other nuclear sources.

Your correspondent, for one, will be using that shielding in his oven tomorrow.

 source

 

Follow

Get every new post delivered to your Inbox.

Join 888 other followers

%d bloggers like this: